Cross-Architecture Performance Prediction
Bachelor’s Thesis / Master’s Thesis / Student Research Project
Abstract
Generally speaking, benachmarking of embedded devices is very time-consuming, as they are often not as powerful as a desktop computer. In their paper “Learning-based analytical cross-platform performance prediction” [1] Zheng et al. use different machine learning models (regression models) to predict the runtime of a program on an embedded device by using performance counter values collected on a more powerful host-machine.
Benchmarking an embedded machine learning accelerator can be even more time-consuming. Therefore, the goal of this student project is to use and adapt the methods proposed in [1] to make cross-architecture performance predictions of DNN models running on embedded AI accelerators by using information (e.g. runtime) collected on a more powerful host system with a GPGPU.
References
Requirements
- Python
- Scikit Learn, PyTorch, Pandas
- Training of classic Machine Learning and Deep Learning Models
- Linux (optional)