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Augmenting Image Data Sets

With Water Spray Caused by Vehicles on Wet Roads
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Abstract— Adverse weather conditions challenge object de-
tection neural networks, because they are mostly trained on
clean data sets that were taken in good weather. But au-
tonomous vehicles rely on accurate detection and classification
of other road users for safe and reliable operation. Capturing
new data sets in rough weather is time consuming and ex-
pensive. We therefore propose a method to augment existing
image data sets with physically realistic water spray swirled
up by vehicles—one of the most influential disturbances for
even human drivers on wet roads in or after heavy rain. Using
a wide range of newly augmented images, we evaluate the
influence on an established convolutional neural network object
detection and showcase the potential of training with these new
augmented data sets.

I. INTRODUCTION

In the light of recent reports of road accidents that involve

at least one autonomous vehicle, car manufacturers strive

to limit the damage done to their images. These incidents

not only reduce trust into the responsible company—trust

into autonomous transportation as a whole is shaken by

reports of vehicles that collide head on, injuring unsuspecting

passengers as well as bystanders.

This circumstance is reinforced by the fact that humans

tend to blame machines more than other humans for their

roles in accidents [1]. In otherwise equal scenarios, a vehicle

driven by a machine learning algorithm is far more likely to

be held accountable for its errors than a human driver would

be. When the outcome of the scenario was more severe, the

blame increased.

But it does not need real accidents to decrease the per-

ceived reliability of self driving cars: even just prompting

the passenger to take over—because of system failure, ad-

verse weather conditions, or other road users—lowers the

overall reaction time to those disengagements, pointing to a

increased lack of trust [2].

To regain this trust, autonomous vehicles have to operate

without error for a prolonged time and avoid handing the

control back to the passenger. Disengagements are caused

by adverse weather conditions about as frequently as by

other road users and twice as frequent as by roadwork sites.

But image data sets, widely used to train machine learning

algorithms, mostly contain images taken under ideal weather

conditions. Only slowly are data sets published that contain

adverse conditions like rain, snow, or fog.
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One method to quickly and accurately create those data

sets is to simulate a broad range of weather conditions and,

with the results, augment existing data sets. In this work we

set out to simulate a byproduct of rain, the most frequent

adverse weather condition: the spray dispersed by quickly

moving vehicles during rain or on wet roads. Spray reduces

visibility and consequently reaction times, making it the most

frequent reasons for accidents in rain [3]. Adding this spray

to training data sets improves the overall resilience against

rainy situations and on the other hand shows where existing

machine learning algorithms are lacking.

In section II we highlight the relevant previous work and

show that no other simulation handles the augmentation of

images with spray. Then we describe how our simulation

generates and then renders the spray behind vehicles in

section III. Using our simulation we showcase the rendered

spray and elaborate the impact on machine learning object

detection algorithms in section IV. Finally, section V con-

cludes this paper and suggests further research topics.

II. RELATED WORK

Multiple data sets, containing images, depth informa-

tion, and even LiDAR measurements, already exist. Most

prominent are the KITTI data set [4] and the Cityscapes

data set [5]. Both contain hundreds of manually labeled

images, enabling machine learning algorithms to learn object

detection, depth perception, and semantic segmentation—

but neither contain any images taken under adverse weather

conditions. A variety of research was carried out based on

these and similar data sets training neural networks to near

perfection, neglecting disturbances introduced by rain, snow,

or fog. Some research exists dealing with the removal of

adverse weather conditions from input images [6], [7], but

these expensive neural networks are not fit for real time

applications in automated vehicles.

To combat this shortcoming, many data sets containing

scenes with visible weather conditions emerged, either by

augmenting existing ones or by creating completely new

ones. Kenk et al. collected a selection of scenes in snow,

rain, and fog, complete with annotations [8]. Similarly, Volk

et al. gathered a multitude of images from publicly available

dashcam videos during light to heavy rain and provided

bounding boxes for all vehicles [9].

Completely new data sets were produced by Zhou et al.,

who specifically drove on a campus at different times and

weather conditions to capture a wide variety of scenes [10].

The same was done by Tung et al., who focused on rides

during dusk and night, especially during rain [11].
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Collecting new data sets is expensive and time

consuming—not only because of the cost to outfit a vehicle

with sensors, but also because the recorded data has to be

(often manually) labeled. Additionally, the vehicle and its

driver have to stand by, waiting for the required weather

to happen. Therefore augmenting already labeled data sets

is a viable option, especially when the simulated weather

conditions can be varied widely to create an even larger

number of new images.

By augmenting Cityscapes with synthetic fog, Sakaridis

et al. created Foggy Cityscapes [12]. Simulating rain and

adding it to preexisting images was done by Sindagi et al.,

who applied a simple mask onto the images [13], or by

Halder et al., who used simulated physics and optics to create

realistic rainy images [14].

Different adverse weather conditions were simulated by a

range of researchers, for example rain [15], [16], snow [17],

[18], and fog [17], [16].

Lacking from all previous simulation methods is the spray

that is dispersed by vehicles that drive on wet surfaces. To

simulate this physically correct, we used the work of Kooij

et al. regarding the size of spray [19], a multitude of research

regarding the movement of spray [20], [21], [22], [23], [24],

[25], and the fast OpenGL render method for water droplets

by Slomp et al. [26].

III. SPRAY SIMULATION

Spray occurs when a vehicle drives on a surface that is

covered by a layer of water. This happens even on the best

asphalt roads when the rain is heavy enough. Small water

droplets are carried up by the wheels of the vehicle and are

released into the air behind it.

For a mechanically accurate and optically exact spray

simulation, we have to first position all drops of the spray

correctly, and then render all generated drops quickly. The

rendering step is based on a single data set image like

provided by Cityscapes or KITTI. The challenge comes from

augmenting an existing 2D image instead of fully rendering

a synthetic scene as can be done in Carla or other 3D

simulations. To maintain feasibility, both steps are optimized

and, if the results are not affected, approximated.

A. Drop Positioning

Numerical physics simulations, like the ones carried out

by Kabanovs et al. [20] or Kuthada et al. [27], show that

spray drop diameters vary between 10 µm and 500 µm.

The simulations by Kuthada et al. use a fixed diameter of

200 µm as their results match experimental results best at

this value. While vehicle speed does have an impact on the

drop diameter, that minor impact allows us to neglect the

influence on the diameter for a simpler simulation. We used a

mean diameter of 200 µm with a standard deviation of 10 µm

and sampled each droplet from this normal distribution. The

range of very small fog-like droplets have to be taken into

account, too. This will be done at the end in a separate step.

The initial velocity of a droplet originating from a spinning

wheel is assumed to be equal to the rotational velocity of that

wheel. As the wheel is as fast as the vehicle it is attached to,

the initial droplet velocity is equal to the vehicle velocity v,

conversely. Together with the angle α the droplet is ejected

relative to the ground, the initial droplet velocity vector is

defined as

~v0 =

(

v · cosα
v · sinα

)

. (1)

After a spray drop is detached from the wheel, it is subject

to aerodynamics and gravity. Air resistance acts directly

opposed to the drop’s velocity vector, slowing the droplet

down along the way. The slower the droplet gets, the weaker

the aerodynamic force becomes, as the drag force FW is

defined as

FW = cWA
̺v2

2
, (2)

where cW is the drag coefficient (cW = 0.45 for a small

sphere), A is the area exposed to the drag (A = 2rπ with the

droplet radius r), ̺ is the mass density of the surrounding

liquid (̺ = 1.293 kgm−3 for air), and v = ‖~v‖2 is the

absolute velocity of the droplet [28]. As v decreases, FW

decreases as well and slows the droplet down less. The drag

deceleration vector ~adrag can be determined by solving FW =

m~adrag (Newton’s Second Law) for a and substituting m =
4

3
πr3ρ (where ρ is the mass density of water):

~adrag =
FW

4

3
πr3ρ

·
−~v

‖~v‖2
. (3)

This deceleration opposes the velocity vector.

At the same time, gravity acts on the up-component of

~v, bringing the upward motion to a stop and accelerating

the drop back down—until being counteracted by drag again

(or stopped by the floor). The simple resulting acceleration

vector can be described as

~ag =

(

0

−g

)

, (4)

where g is the acceleration of gravity. The combined

acceleration acting on a droplet is then

~a = ~adrag + ~ag. (5)

Because, given a time since the beginning of the flight, a

droplet’s position depends on the current deceleration it ex-

periences by drag—which in turn depends on the velocity—it

is easiest to numerically approximate the whole process. For

this, we updated all accelerations, the velocity, and therefore

the position in very small time steps. An exemplary resulting

flight path is shown in Figure 1.

After determining the flight path of a single droplet in 2D

space, we can now transfer this simulation into the 3D space.

We added jitter to the positions of the droplets at every time

step, gaining standard deviation the longer the time of flight.

An exemplary drop distribution can be seen in Figure 2.

Having calculated the position of each droplet, we can now

distribute the spray clouds in the 3D scene, each originating
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Fig. 1: Side view of a single spray droplet. After being

flung from a rotating wheel, a droplet is affected by gravity

(down) and aerodynamic drag (opposing the velocity vector

of the droplet). The latter leads to a fast decrease in velocity

in the x-direction. This example uses an initial velocity of

36m s−1 and a spray angle of 30◦.

Fig. 2: Example of a drop distribution behind an imaginary

wheel positioned at the origin. To maintain visibility, this

plot largely reduced the number of drops. Colors indicate the

longitudinal distance from the origin and aid spatial vision.

The axes show meters.

at a relevant wheel in the scene. The wheel positions can

either be detected by computer vision algorithms, neural

networks, LiDAR matching, or be read from a 3D-labeled

data set.

B. Drop Rendering

After the positions of each wheel and each spray droplet

are determined, the latter have to be rendered as spheres [29].

With a radius of around 200 µm, the droplets are just large

enough to influence visible light geometrically, opposed to

Mie scattering that occurs when the droplets are smaller,

like in fog [30]. Geometric reflection happens many times

in the scene; between the light source, objects in the scene,

and in between the spray droplets. The geometric refraction,

that occurs inside of the single droplets, can itself lead to

total internal reflections or secondary reflections after the

first refraction. To keep the computational load manageable,

we focused on the primary reflections and refractions that

happen at a single droplet.

Even when only calculating the primary light rays that

color each pixel in the resulting image, these complex

calculations can be very time intensive. For each pixel one

(or even 4, 8, or 16, if super sampling is activated to battle

aliasing) rays would have to be shot into the scene. Each ray

would have to be checked for collisions with a droplet, then

both reflection and refraction on the droplet would have to

be calculated. Finally, the reflected and refracted rays would

have to be collided with the 3D scene.

Instead, we utilized the work of Slomp et al. [26]. In place

of the expensive ray tracing, they precalculate many possible

reflection and refraction vectors depending on both distance

of a drop to the camera and the position where the drop is hit

by a ray. Being implemented in OpenGL, these precalculated

vectors are then stored in textures, using the RGB channels

of a texture image as XYZ coordinates for the directional

vectors. This yields a three dimensional texture, a mipmap

texture, for each reflection and refraction. The textures are

shown above the arrow in Figure 3.

Water drops are then represented by billboard quads—

squares, that always face the camera. Compared to creating

the rather complex spherical shape of a drop using triangles,

the usage of these billboard quads only requires two triangles

to be instantiated. Mapped onto these quads are the reflection

and refraction textures. When rendering the quads with

OpenGL, the correct direction vectors are just looked up in

the textures and do not have to be calculated every single

time.

Having looked up both reflection and refraction vectors,

the renderer has to know what that ray would hit if it flew in

this direction. For this we created a cubemap from the input

image. A cubemap is usually generated from a 360◦ image

taken with specialized cameras and describes the colors of

the environment around a given point in space. As we only

have a single image to work with, we cut this image and

stitch it together for a simple approximated cubemap. This

cubemap then serves as lookup source for the renderer.

The resulting reflected and refracted color are then mixed

according to the Fresnel effect. This effect describes the

phenomenon that the obtuser the angle in which a ray hits

a reflecting and refracting surface, the more reflected light

contributes to the final color.

To account for minor disturbances on the surface of a

moving water droplet, we approximated the very small waves

that would form on the surface [29]. Instead of directly

modifying the surface, we apply a pseudo-random three

dimensional vector to all vectors that are read from the vector

textures. As the random vectors may not have any abrupt

value changes, we used an GLSL implementation of simplex

noise [31]. Simplex noise is a gradient noise, meaning that

continuous changes in the input result in continuous changes

in the output—perfect for our use case.

Geometrically added to the original ray direction—and

then normalized—this new vector behaves as if the droplet

surface was under the influence of wind. The process is

detailed in Figure 4 and the resulting droplet with disturbed

surface is shown in Figure 3.

Finally, the magnitude of droplets that are too small to

qualify for geometric reflection and refraction has to be taken
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Fig. 3: The render pipeline visualized using a single large drop in front of the camera. From a single image, an environment

map is created. Then, using precalculated vector masks saved in textures, a quick approximation of primary refraction and

reflection is created. Both are then blended according to the Fresnel effect to produce the drop on the right. The wavy effect

is achieved by adding continuous simplex noise to the reflection and refraction vectors. The exemplary input image is taken

from Cityscapes [5].

~L

~L′

~R

Fig. 4: Adding three dimensional simplex noise in form of a

random vector ~R to the light ray direction ~L after reflection

and refraction. The resulting vector ~L′ lets the reflection and

refraction behave as if the droplet surface (dashed blue line)

was disturbed by wind (solid blue line). All lengths and

heights are exaggerated for better visibility.

into account. Being basically a locally bounded fog, they

experience in and out scattering [30]. Instead of rendering

the very high number of those micro droplets, we accounted

for them by mixing the sky color into the final droplet color.

The sky color is assumed to be the color sampled from the

cubemap by an up-pointing vector.

IV. RESULTS

To test and compare the results, we used two different

types of input data: the Cityscapes data set [5] and the

KITTI 3D data set [32]. We chose these quite different data

sets to show the adaptability of our method.

The Cityscapes data set consists of stereo images taken

from a vehicle, looking into the direction of travel. It is ac-

companied by manual labeled ground truth in form of image-

space bounding boxes around objects. To get it working with

our simulation, we used the provided disparity maps to get

the necessary information about the distance of each pixel

in the images. Each image-space bounding box can then be

approximately positioned in three dimensional space. In case

of vehicles driving in front of the ego vehicle, these boxes

mark the rear surface of those vehicles. By assuming that

the vehicles have two wheels and that these are located at

the bottom of the vehicle, left and right, we can calculate the

spacial positions of our spray origins. Because each pixel has

an associated depth, we can even reconstruct the complete

scene in three dimensional space before we add our spray to

it [17]. This way we achieve occlusion of the rendered spray

by objects that are closer to the camera. An exemplary image

can be seen in Figure 5. We compare it to an image from the

Realrain data set [9]. The comparison only focuses on the

occlusion that the spray provides—all other circumstances

like fog in the image, or different lighting conditions cannot

be compared directly. This stems from the lack of clean spray

data sets—the very issue we want to improve with this work.

On the other hand, the KITTI 3D data set provides single

images of road scenes, but comes with hand-labeled LiDAR

space coordinates, dimensions, and headings for all road

users, as well as image-space bounding boxes. We read

the locations of all road users, determined their respective

direction of travel, and looked up their length along this

direction. Going back half that length, down half their height,

and left and right half their width, we found their wheel

positions.

Next, we used the RESIST testing framework [33] to

include our render pipeline into a evaluation environment.

With help of the framework, we read all KITTI 3D images

and ground truth data and fed the images into YOLOv3 [34],

an object detection convolutional neural network. Then we

assessed the performance of YOLOv3 on the clean, unaltered

KITTI 3D images. As metric we used the average precision

with an Intersection over Union threshold of 0.5.

Having established a baseline, we gradually added spray

to all images on the fly, starting with an assumed vehicle
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Fig. 5: Qualitative comparison of real spray (taken from the

Realrain data set [9]) on the left, and our simulated spray on

the right. Because of the lack of clean spray data sets, we can

only compare the occlusion of the lower end of the vehicle.

Here, we can observe similar behavior: parts of the wheel

are not visible, as well as part of the rear end and parts of

the rear lights. The spray conceals vital image features that

might be used for robust object detection. The spray color

blends in with the background and the color of the street; it

reaches the same height as the real spray.

speed of 50 kmh−1 (the standard speed allowed within city

limits in Germany), going up to 70 kmh−1, 90 kmh−1,

and 110 kmh−1 (a sane vehicle speed on very wet, rainy

highways). We then compared the object detection average

precision of each run with the baseline values, separate for

cars and trucks. The relative decrease in average precision

compared to the baseline, is graphed in Figure 6. Looking

at the average precision of the detection of just cars, we can

observe a drop of 7.6% at the lowest and a drop of 10.4%

at the highest speeds. This indicates an important gap in the

training of the neural network, which could be bridged by

using a data set augmented by our method. Because there are

comparatively few trucks labeled in the KITTI 3D data set,

the drop in average precision is not as meaningful as the drop

regarding cars—but a trend is visible: even the detection of

trucks, which are usually taller than cars, are affected by the

spray they produce.

V. CONCLUSION & OUTLOOK

In this paper we examined the physics behind spray caused

by vehicles that drive on wet roads. Based on this numerical

simulation, we positioned individual spray droplets behind

every vehicle in an existing data set image. We then showed

that the influence of the augmented adverse weather con-

dition has severe influence on object detection algorithms,

because those are trained on mostly clean images. This

highlights the need of more diverse training data sets for

machine learning algorithms.
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Fig. 6: Comparison of the average precision of the ob-

ject detection, grouped by vehicle speed and vehicle type.

The baseline for each relative average precision was taken

from clean images. The average precision is lower than the

baseline at every speed. The faster a car drives, the higher

the spray is swirled up, and the more that car is occluded

by its spray. Even trucks are not detected as well when

they produce spray while driving on wet roads. The truck

comparison’s significance suffers from the low number of

trucks in the data set (only about 1.100 trucks, compared to

28.700 cars).

Our work can provide the edge for the training process,

as we can augment existing data sets with our simulated

spray, leading to cheap, accurate, and customizable new data

sets. Combined with other augmentations like falling rain,

raindrops on the windshield, or wet roads, a comprehensive

simulation framework can be utilized to create even more

realistic weather conditions.

A next step would be the quantitative evaluation of our

simulations, both for visual realism and the impact on other

state of the art object detection algorithms. For that, a real

world spray data set would be the foundation.
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