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Abstract— Autonomous vehicles need a complete and robust
perception of their environment to correctly understand the
surrounding traffic scene and come to the right decisions.
Making use of vehicle-to-vehicle (V2V) communication can
improve the perception capabilities of autonomous vehicles by
extending the range of their own local sensors.

For the development of robust cooperative perception sys-
tems it is necessary to include varying environmental condi-
tions to the scenarios used for validation. In this paper we
present a new approach to investigate a cooperative perception
pipeline within simulation under varying rain conditions. We
demonstrate our approach on the example of a complete vision-
based cooperative perception pipeline. Scenarios with a varying
number of cooperative vehicles under different synthetically
generated rain variations are used to show the influence of
rain on local and cooperative perception.

I. INTRODUCTION

Fully autonomous vehicles aim for a safer, more efficient

and more comfortable mobility. To achieve these goals those

vehicles have to robustly perceive their environment. Only

with a correct and complete knowledge about its environment

an autonomous vehicle is able to operate correctly without

harming its environment and plan safe maneuvers.

In order to get an accurate representation of the envi-

ronment, a variety of sensors are installed in autonomous

vehicles. Camera, radar, lidar and infrared sensors are used

to complement each other and perceive relevant information

of the surrounding environment. Nevertheless, vehicle-local

perception has its limits. At intersections or near buildings,

for example, the sensor’s field of view gets obstructed. Not

only obstructions but also adverse weather conditions like

rain, snow and fog make perception more difficult. Rain and

fog for example affect camera, lidar and radar sensors [1]–

[3], but in a different extent. A report stated that snow

proved to be one of the technology‘s greater challenges [4].

Adverse weather conditions do not only worsen perception of

autonomous vehicles but are also responsible for 21% of cur-

rent car crashes in the US, based on a ten year average from

2007 to 2016, according to the National Highway Traffic

Safety Administration (NHTSA) [5]. Most weather-related

accidents happen on wet pavement (70%) or during rainfall

(46%), causing pavement friction and poor visibility [5]. In

order to deal with these poor visual conditions it is necessary
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to integrate those weather conditions into the development

process of autonomous vehicles.

Cooperative perception systems as presented in [6]–[9]

can be used to cope with such adverse environmental con-

ditions. These systems use V2V communication to extend

the vehicle-local sensor range. Especially in critical environ-

ments such as complex intersections or during bad weather

conditions these systems have benefits over local perception.

Due to the additional complexity of these cooperative

perception systems, there is a need for extensive testing

during the development phase. Real-world test drives are

a possible solution but have one big disadvantage: it is

impossible to reproduce the exact same scenario under

different environmental conditions. Therefore, simulations

in virtual environments are essential to complement the

necessary real-world tests. Only in simulation it is possible

to create reproducible scenarios. This allows a more detailed

investigation of the same scenario leading to system failures

under varying environmental conditions.

In this paper, we present a novel approach to simulate

variations of synthetic rain in a multi-vehicle context to

improve development and evaluation of robust cooperative

perception algorithms. We demonstrate this approach on the

example of a vision-based cooperative perception pipeline.

Finally, we investigate the influence of the varying weather

conditions on vehicle-local and cooperative perception.

II. RELATED WORK

Most approaches for evaluation and development of coop-

erative perception systems either use simplified or restricted

real-world scenarios or simulated virtual environments. The

used scenarios in virtual environment currently lack vari-

ation and especially realistic environmental influences like

weather. Real-world scenarios have the problem that envi-

ronmental influences can not be controlled or reproduced.

Real-world tests in an indoor testing facility have shown

that weather conditions like fog affect camera sensors as well

as lidar sensors [1], [3]. Additional tests have shown that

rain affects camera, radar and lidar sensors [2]. Tests with

artificially applied rain variations have also shown that the

performance of camera-based object detection algorithms is

strongly affected [10]. Hence, different weather conditions

have to be integrated into the development process to enable

the robustness of local and cooperative perception systems.

In [6] a cooperative perception system was developed

and evaluated in a virtual environment. Vehicle-local percep-

tion was implemented using a probabilistic simulation of a

radar sensor. However, the radar sensor simulation neglected



environmental influences. Another approach developed and

compared different methods for cooperative perception [7].

The author evaluated his system both in simulation and in a

real life scenario [7]. The simulative evaluation was similar

to the one in [6] and also used a probabilistic sensor model

without considering environmental effects on sensors. The

real-world scenario in [7] consisted of two cars equipped

by V2V communication on a highway. This scenario lacked

variation in environmental influences, which is necessary to

develop robust cooperative perception algorithms.

In [8], a multiple-object tracking system using V2V com-

munication was developed. A different method for coop-

erative perception by using camera and lidar sensors was

proposed in [9]. Both evaluations in [8], [9] were done on

real-world scenarios. In [8], the scenario consisted of three

cooperative vehicles following one leader vehicle, the authors

in [9] used two cooperative vehicles. Both evaluation meth-

ods show the validity of the developed approach on a specific

scenario with either two or three cooperative vehicles. Again

these scenarios did not contain environmental variations.

Another approach for the evaluation of V2V applications

like cooperative perception is the use of existing simulation

environments. Traffic simulators like SUMO [11] are focused

on traffic flow simulation in whole areas rather than pro-

viding low-level sensor information. In combination with a

network simulation, for example OMNeT++ [12], they allow

the evaluation of V2V applications at an abstract level. This

makes it difficult to investigate the influence of different

weather conditions on the perception system.

Other vehicle simulations like Virtual Test Drive

(VTD) [13], CarMaker [14] or CARLA [15] focus on the

simulation of vehicle surroundings and provide sensor mod-

els and access to the raw camera sensor data. However, the

used methods to apply different weather conditions like rain

are not validated. It is not ensured that their rain model has

the same effects on sensors and algorithms like real rain.

When simulating rain on a camera sensor, these simulations

also lack drops on the windshield like they occur in real life.

For the evaluation of cooperative perception systems an

adequate model of the V2V communication is essential.

Network simulations like OMNeT++ offer a complete model

of the network stack, which makes them very complex and

hard to integrate in the development process. The reception

probability of a packet and the corresponding delay are

the key factors of the communication [16]. An approach to

model the reception probability in dependence to the distance

between sender and receiver was presented in [17]. How-

ever, this approach lacks the influence of the surrounding

environment on the reception probability. This is especially

important on intersections and other situations where the

line-of-sight (LOS) between sender and receiver is obstructed

by buildings. Parameterizable models considering different

environments were proposed in [18], [19]. Another model

which makes use of this parametrization is presented in [20].

This model consists of two components a general model

and the specialized intersection model as proposed in [19].

These two components are parameterized and validated with
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Fig. 1: Detection range of Faster-RCNN under the influence

of different rain variations.

real-world measurements. To obtain channel access times for

different communication ranges a simulation-based approach

was presented in [17]. However, the channel access times

do not represent the complete transmission time. A real-

world evaluation on the communication delay of up to four

vehicles and a packet frequency of 100Hz was presented by

the authors in [16].

III. PRELIMINARY STUDY

Many simulation-based approaches used for development

and validation of algorithms for autonomous driving such

as traffic simulators like SUMO, simulators like VTD or

Carmaker do not address the effects of varying weather

conditions on sensor data and especially the subsequent

object recognition. Also real-world tests include very little

data with varying weather conditions and do not allow

conclusions to be made about the influence of weather on

object recognition. To show the influence of rain on image-

based object detection we conducted a test with variations

of synthetically generated rain.

The result of the evaluation is shown in Figure 1. The

mean average precision (mAP) is plotted over different object

distances under varying rain conditions. It can be seen that

even for close objects the probability of a correct object

detection drastically decreases. Resulting in a much lower

perception range under adverse weather conditions.

The evaluation was performed on Faster-RCNN presented

by Ren et al. in [21] which is an artificial neural network

for object detection and well established in the automotive

community. For training the KITTI dataset from Geiger et

al. [22] is employed. The data was split into two disjoint

sets: a training set with 6800 images and a test set with

the remaining 680 images. To evaluate the influence of rain

variations on object detection the original KITTI images

were augmented with variations of synthetically generated

rain as described in section IV-B. The rain intensity was

varied from 0-90mm/h. An example of the augmentation

technique is illustrated in Figure 2.

Faster-RCNN then was evaluated on the three KITTI

labels car, pedestrian and cyclist. To evaluate the quality

of object detections the established average precision (AP)



(a) Original KITTI image.

(b) KITTI with our applied synthetic rain variant.

Fig. 2: Real-world image from KITTI compared to the same

image with synthetic rain variant simulating 30mm/h.

metric was used. The AP metric is also used by KITTI [22] or

COCO [23] to evaluate the quality of object detections. The

metric is described by Everingham et al. in [24]. To count

as true positive (TP) the overlap threshold between ground

truth (GT) and detected bounding box was set to 70% and

duplicate detections count as false positive (FP). KITTI also

offers the 3D world position of a labeled object. The KITTI

labels were grouped into 16 bins for evaluation. Each bin

holds all labeled objects from the 680 images, which are in

a specified range from the observer. The first bin contains all

objects within a distance of 0-5m and the last bin contains

objects within a distance of 75-80m.

The plot shows a lower perception probability for objects

with a distance of 60m than compared to more distant

objects at 70-80m. This is due to the nature of the input

data from KITTI. In the evaluation data there are 65 labeled

objects at a distance between 55-60m compared to only 19

objects at a distance of 70-75m. Faster-RCNN detects 8 out

of the 19 more distant objects compared to 13 out of 65

for the nearer ones. However, the small number of objects

at the distance of 70-75m does not allow to make a valid

statement about better perception probability of more distant

objects for Faster-RCNN in general.

This evaluation shows the need to increase the robustness

of detection algorithms against environmental influences.

The performance degradation is partly due to the training

data. Hence, one possible solution would be to include these

missing conditions to the training data and retrain algorithms

again to gain a more robust perception. However, we aim

to use cooperative perception to increase the sensor range

of the vehicle-local perception. This allows to reduce the

effects of adverse weather conditions and additionally to

improve perception in case of occlusion. The results also

reveal the need to consider these effects in the development

of cooperative perception systems to make them more robust

and able to handle adverse weather conditions correctly.

B) Weather Simulation
A) Scenario Generation

C) Local Perception

D) V2V CommunicationE) Cooperative Perception

Fig. 3: Illustration of our cooperative perception pipeline.

Red and blue bounding boxes represent the vehicle local

perception of the ego vehicle (blue) and the cooperative one

(red). Cooperative perception is illustrated in green.

IV. PROPOSED APPROACH

To enable the development of a robust cooperative per-

ception system we define a cooperative perception pipeline

which considers varying environmental conditions. The pro-

posed pipeline consists of five steps as illustrated in Figure 3.

First a scenario variant is generated specifying coopera-

tive vehicles and the desired variations in environmental

conditions. The next step is to realistically simulate these

conditions followed by a vehicle local perception. The locally

perceived objects have to be transmitted via V2V communi-

cation to finally perform a cooperative perception.

A. Scenario Generation

First, we generate a scenario variant to specify the desired

variations of environmental conditions. We use the driving

simulation VTD as it utilizes the open source standard Open-

Scenario for describing present vehicles and their behavior in

the virtual environment. The simulator controls the vehicles

according to their specified behavior. This simplifies the

generation of scenarios as we do not have to deal with

vehicle controls. OpenScenario allows the specification of

a weather condition in a scenario definition. However, the

present weather conditions do not offer the needed flexibility

to cover the large variety of possible weather effects.

We defined a specific scenario variant S = {O,W, V }.

O represents the original OpenScenario description and W
specifies the desired environmental variation like e.g. rain.

The parameters needed to specify a rain variant are defined

in section IV-B. V is a subset of vehicles from scenario

O. Each vehicle o in V contains a definition of attached

sensors, their position and orientation within the vehicle

and sensor specifications. The sensor specification c for a

camera sensor includes field-of-view (FOV) in horizontal

and vertical direction, the resolution of the camera in pixel,

the far and near clipping plane in meter and the focal

distance in millimeter. These sensor specifications will later

be needed for our simulation of weather conditions. After a



scenario variant is completely specified, the simulation will

be automatically configured to attach all specified sensors in

V to the corresponding vehicles defined in the scenario.

B. Simulation of Weather Conditions – Rain Variations

Our approach to simulate synthetically generated rain

variations with realistic properties is composed of two steps.

Both steps are applied on all camera sensors specified in each

vehicle o. The rendered scene of the simulation environment

in combination with the corresponding depth image is used

as input for our augmentation approach.

First, the methodology already presented in [25] is used

to simulate falling rain based on a reconstructed 3D scene

using depth images. Falling rain streaks are distributed in the

space between camera and background respecting physical

properties and the sensor specification c. The second step

is to simulate resting raindrops and water spray on the

windshield. This is done by using the approach in [26]. This

approach uses depth images as well to reconstruct the 3D

scene. Then raindrops are distributed on a virtual windshield

and ray tracing is used to render the drops physically correct

onto this virtual windshield.

The two approaches in [25], [26] have been used for

synthetic rain generation and variation as they are validated

to generate physically correct results. The authors in [25]

validated their rain model using metrics of basic image

processing algorithms represented by sobel filtering, canny

edge detection, harris corner detection and SURF features.

These algorithms have been applied to images with real rain

and with simulated rain. Afterwards the detected features

on the images containing real rain were compared to the

ones with simulated rain. It was shown that simulated rain

produces a similar drop of correctly detected features like

real rain. This proves that the used rain model not only

produces realistic visual effects as illustrated in Figure 4 but

also has similar affects on objects detection algorithms as real

rain. Furthermore, these approaches are scalable and allow

the generation of varying rain conditions in contrast to other

approaches like [2], [27] which apply static rain filter masks.

The combination of [25] and [26] allow variations on rain

angles, different rain intensities, specification of the number

and size of drops on the windshield to test perception systems

on a large variety of possible rain conditions. An illustration

of our synthetic rain is shown in Figure 4. A comparison to

the provided rain generation of the used simulation environ-

ment shows the improvement of our approach.

C. Vehicle-local Perception Pipeline

The third step after augmenting camera sensor data is to

perform a vehicle-local object detection. First, objects are

detected on the image plane and need to be converted from

2D image coordinates to 3D world coordinates to be able to

use them for cooperative perception. Finally, the perceived

3D objects are tracked with a multiple-object tracker for a

more robust perception.

(a) Rain simulation provided by the simulation environment.

(b) Proposed method for generating rain variations.

Fig. 4: Comparison of VTD rain simulation with maximal

supported rain intensity vs. our method for synthetic rain

variant generation simulating 30mm/h on an example frame

of our intersection scenario.

1) Image based object detection: For image-based object

detection the TensorRT [28] implementation of Faster-RCNN

was used to enable real-time inference. Our approach cur-

rently focuses on applying weather conditions on image-

based sensors and hence our perception is solely built on

image-based object recognition.

2) Estimation of 3D object location: After 2D bounding

boxes in image space are obtained, the 3D location and

dimension of the detected object needs to be estimated.

Therefore, the provided depth image of the simulation en-

vironment is used. Our focus is on image-based object

detection. Hence, depth values are only needed to obtain

realistically estimated 3D positions of the detected objects.

The center of the detected image plane bounding box for

object i is defined as bbi = (ui, bi), ui and bi represent

2D pixel coordinates. Starting from bbi, pixel coordinates

with the corresponding depth values are defined to belong to

the detected object i as long as neighboring depth values

have a distance below the defined threshold of 1m. The

resulting point-cloud of object i consists of 3D camera

coordinates containing u and b in pixel coordinates and

their corresponding depth value in world coordinates. With

the sensor specification c the intrinsic camera matrix K
gets calculated to convert the point-cloud from 3D camera

coordinates to 3D world coordinates. This lidar like point-

cloud allows to estimate the rectangular shape of the detected

object using the l-shape fitting algorithm presented by Zhang

et al. in [29]. The position of a detected object is defined by

the center of its detected shape. In comparison to [29] no

clustering of the point-cloud is needed as each point-cloud i
only contains points from the corresponding object i.

3) Multiple-object tracking (MOT): As last step in the

vehicle-local perception pipeline a MOT for perceived ob-

jects was implemented using a constant velocity (CV) model

and a Kalman filter (KF) [30]. The state space of the KF was

defined as [x, y, ẋ, ẏ], where x is defines the longitudinal

and y the lateral distance of an object relative within the



vehicle-local coordinate system. ẋ and ẏ are the derivatives in

time representing the absolute velocity v. A new track for an

object is initialized if at least three observations are present.

It is deleted if no new observation within a time span of

0.5 s was observed since the last observation. The association

of an object to a track is performed by a nearest-neighbor

(NN) matching with the euclidean distance. Additionally the

estimated object dimension in x (length) and y (width) gets

associated to the object track. The mean absolute error of

the ego vehicle location within the simulation was set to

1m, the error of velocity was set to 0.17m/s and the error

in observing the yaw angle of the ego itself was set to 0.12°

as observed by real-world measurements in [7]. To improve

the estimation of the ego vehicle state, it is tracked with

a constant turn rate and acceleration (CTRA) model and

an extended Kalman filter (EKF) [30]. The state space of

the EKF is defined as [x, y, v, ψ, a, ψ̇]. x and y represent

the location of the ego vehicle within the global world

coordinate system, v is the absolute velocity and a represents

the acceleration in moving direction. ψ is the yaw angle and

ψ̇ is the yaw rate. The corresponding state transition for a

time step t can be found in [7].

This perception pipeline is executed for all vehicles o in

V . The observed objects are time-stamped with the global

time from within the simulation environment when the

image data was captured. This ensures the same time base

for later processing within cooperative perception. For the

most realistic representation of the perception pipeline the

observed objects are delayed by the needed processing time

of our perception pipeline.

D. V2V Communication Model

The next step in our cooperative perception pipeline is

represented by broadcasting the locally perceived objects via

V2V communication. In order to represent the communica-

tion as realistically as possible we need to define a V2V

communication model to accurately estimate the reception

probability and delay of communicated messages.

An important message type for V2V communication is

the cooperative awareness message (CAM) as defined in

the ETSI ITS-G5 standard. This message includes the po-

sition, velocity, information about the sender vehicle and

the current time stamp. However, this message does not

allow for accurate cooperative perception, as it only contains

information about the ego vehicle and does not include its

perceived objects. Therefore the cooperative perception mes-

sage (CPM) is used to include the perceived dynamic objects.

This message type was defined by the research project Ko-

PER [31]. It contains information about the motion state of

the ego vehicle as well as its perceived objects.

The V2V model presented in [20] will be used in our

approach as communication model as it is parametrized and

validated with real-world measurements and can be used in

a large variety of different scenarios considering the current

environment. The proposed model consists of a general part

which fits most situations like highways, rural and suburban

areas except intersections. For intersections the model of

TABLE I: Communication parametrization from [20].

Transmission frequency 5.9GHz

Height of transmitting & receiving antenna 1.5m
Receiver sensitivity PS −98dB

Transmitting power PTX 25dB

System loss LS 3dB

Mangel et al. [19] was used. Both models use the Nakagami

probability density function (PDF) as shown in Equation 1

as basis for calculating the reception probability. Γ(m) is

the Euler’s Gamma function, m the shape parameter of

the Nakagami function and Ω the average power of the

transmitted signal at a given distance.

PDFnak(r;m,Ω) =
2mmr2m−1

Γ(m)Ωm
exp(−

mr2

Ω
)

r ≥ 0,Ω > 0,m ≥ 0.5

(1)

The Nakagami-m distribution describes the amplitude r
of the transmitted signal according to the shape parameter

m at a given distance in the wireless channel [32]. With

the receiving power p ∝ r2 the reception probability of

a transmitted packet can be calculated by the cumulative

distribution function (CDF) of the Nakagami distribution

(Equation 2) as defined in [33].

CDFnak(p;m,PRX) =
γ(m, mp

PRX

)

Γ(m)
(2)

For evaluating the reception probability of a transmitted

signal, the average receiving power PRX = Ω gets calculated

according to Equation 3.

PRX = PTX − LS − LP − LW (3)

PTX describes the transmitting power of the sender, LS is

the system loss, LP represents the path loss and LW the loss

for a specific weather condition. Equation 3 is an extension

of [20] by additional weather-specific loss.

The path loss is calculated by the adapted two-ray ground

model as presented in [20]. It is calculated depending on

the present environment between sender and receiver, the

area and the used communication model. The area can

be urban, suburban, rural or highway. The environment

between sender and receiver can be defined by LOS without

or with obstructions like wood, hills, buildings or walls.

The environment and area between sender and receiver is

extracted from underlying OpenStreetMap representation of

the currently used scenario variant S.

LW is defined as the rain specific attenuation for the wire-

less signal. According to [34] the rain specific attenuation

LW (dB/km) is obtained by the rain rate R (mm/h) with

the power-law relationship:

LW = kRα (4)

The parameters k and α are determined by functions

of frequency, f (GHz). With the formula and parameters



provided in [34] k and α are calculated for the used com-

munication frequency of 5.9GHz:

k = 0.00044103, α = 1.5797

With the specified parameters in Table I the reception

probability can now be calculated for the receiving power

p = PS for a given scenario variant S. In Figure 5 the

reception probability in a LOS environment on a highway is

illustrated with and without rain specific attenuation. The at-

tenuation by rain has little influence on the overall reception

probability. However, if we aim to improve the robustness

under varying rain conditions we can not neglect rain effects.

Therefore, we include the rain specific attenuation in our

communication model to have a more accurate and environ-

mental aware representation of the communication channel.

The second important part of the V2V communication

model is the delay of transmitted packets. A real-world

investigation of the transmission latencies was conducted

in [16]. The latencies ranged from 5ms to 22ms. The inves-

tigated messages consisted of CPMs and not solely of CAMs,

which is consistent with our application case. Additionally

the results were obtained from real-world measurements.

Hence, our communication model uses the observed latency

distribution from [16].

E. Cooperative Perception

The cooperative perception is realized through a track-to-

track fusion of the cooperatively perceived objects (CPOs)

to the local tracks of the ego vehicle. The perceived objects

contain a time stamp tcap characterizing the capture time of

the camera image where these objects belong to. This time

stamp tcap lies in the past while tcoop represents the current

time at the cooperative perception. The difference in the time

stamps is given by ∆t = tcoop− tcap = dlp+dcomm , where

dlp is defined as the delay of the local perception and dcomm

is the communication delay.

Before processing the CPOs, they have to be aligned to

the time tcap,ego. This is the time stamp where the image

data of the ego vehicle was captured and represents the

corresponding time to the locally perceived objects (LPOs).

As local perception included MOT this can be achieved by

predicting the movement of the objects to the time tcap,ego.

The prediction of the CPOs is only done to tcap,ego and

not until tcoop as the tracks shall first be updated with new

observations and then predicted to the current time tcoop to

achieve a more accurate tracking result. This prediction step

is done for all CPOs resulting in the same time stamp tcap,ego
for all present objects CPOs and LPOs .

After temporal alignment, the objects have to be matched

to already existing tracks. The parameters for MOT for

cooperative perception are similar to the local perception

from section IV-C. A new track is created if at least three

observations for an object are present. The track will be

deleted if no update within 0.5 s after the last observation

was performed. To associate the objects to tracks like in IV-C

a nearest neighbor matching with the euclidean distance was

performed. For the objects which got associated to an already
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Fig. 5: Reception probability of the general V2V model on

a highway. Comparison of scenario without rain and a rain

intensity of 90mm/h.

existing track an update of the KF is performed with the new

observation. Additionally the object dimensions associated

to the corresponding track are updated as in IV-C. For

unassociated observations new tracks are initialized, but are

not valid until the previously mentioned three observations

are perceived. After the locally and cooperatively perceived

objects are processed, all valid tracks are predicted to the

current time tcoop.

V. RESULTS

Finally the presented approach for development and eval-

uation of robust cooperative perception systems is evaluated

by comparing the performance of the implemented coopera-

tive against a vehicle-local perception. We focus on showing

the influence of synthetic rain variations on local as well

on cooperative perception. We do not aim to prove the

correctness of the cooperative perception algorithm itself.

The realism of vehicle movements depends on the vehicle

behavior models of the driving simulation. As introduced in

section IV-A we base our approach on the driving simulation

VTD. However, our approach can also be used in combi-

nation with other driving simulators. The only limitation is

that the driving simulator has to utilize the OpenScenario

standard to fully support the scenario generation step.

Three different scenarios with varying rain conditions

are evaluated. This results in a more realistic evaluation

of the perception system as compared to the evaluation

for example in [6]–[9]. The evaluation presented in these

approaches were either only restricted real-world scenarios

with few variation tested or the sensor data was generated

with a probabilistic model within a simulation. In the fol-

lowing the performance results of the perception system on

three different scenarios will be presented. All scenarios are

evaluated on the local perception (LP) of the ego vehicle

compared to the ego vehicles cooperative perception (CP)

using the CPMs of cooperative vehicles in its environment.

For evaluation of perception performance the multiple-object

tracking performance (MOTP) or the multiple-object tracking

accuracy (MOTA) like presented in [35] could be used. This

metric has the disadvantage that a tracked object hypothesis

does not necessarily has to have an overlap with the un-

derlying GT. The object hypothesis is a TP detection if the



TABLE II: Comparison of mean average precision of local perception (LP) against cooperative perception (CP) over different

rain rates on the rural-road, intersection and highway scenario. CP20 and CP40 refer to different equipment rates.

Rain-rate Rural road scenario Intersection scenario Highway scenario
in mm/h LP in % CP in % LP in % CP20 in % CP40 in % LP in % CP20 in% CP40 in %

0 32.17 37.83 15.86 22.30 32.98 10.63 22.69 28.27
10 23.50 39.50 15.60 21.12 31.57 7.86 20.59 26.44
20 20.83 39.83 15.44 21.21 31.80 5.49 19.81 25.70
30 12.50 38.83 15.46 20.77 31.28 4.21 19.06 25.40
40 11.50 37.17 14.99 19.74 30.46 3.21 18.22 24.73
50 11.33 38.50 14.72 18.89 29.72 1.51 17.39 24.48
60 4.00 37.83 12.99 17.35 28.56 0.58 16.61 24.36
70 3.67 35.50 11.65 14.62 25.85 0.07 16.54 24.30
80 2.00 32.50 10.25 12.55 23.58 0.00 16.35 24.00
90 1.67 31.33 8.64 11.45 22.59 0.00 16.15 23.75

distance of the objects is below a defined distance threshold.

To evaluate the perception we therefore used the average

precision metric as already introduced in section III. We

calculate the overlap between object hypothesis and GT on

3D world coordinates with neglected height information and

not on 2D pixel coordinates. As the 3D estimation of an

object solely from image data represents a difficult task the

required overlap threshold was set to 30%. This overlap

threshold was chosen as it represents a more significant

estimation of the perception performance than using a dis-

tance threshold between object hypothesis and GT as in [35].

Table II contains the results of the three different evaluated

scenarios which will be discussed in the following.

A. Rural road scenario

The first scenario is a simple one containing three vehicles

on a rural road in total, the ego vehicle and two preceding

vehicles. For the CP scenario the rear vehicle of the two

preceding ones is cooperative. The increase of CP without

rain is only 5%. This is due to the fact that only two

vehicles different from the ego vehicle are present within the

scenario and the LP is able to detect the preceding vehicles

in approximately 1/3 of the cases. However, the robustness

of the cooperative perception with increasing rain intesity

can be clearly seen. With only 1.67% of correctly perceived

vehicles for LP at a rain rate of 90mm/h, CP is able to

achieve almost the same performance as LP without rain.

Still, rain also affects CP and not only LP. The advantage of

CP is also due to the fact the CPM includes the position of

the cooperative vehicle and not only its perceived objects.

B. Urban intersection scenario

The second scenario to be evaluated is a complex inter-

section scenario containing the ego vehicle and 15 others.

An extract of this scenario is illustrated in Figure 3. For CP

two different equipment rates of 20% and 40% are evaluted,

denoted as CP20 and CP40. This means that either 20% or

40% out of the 15 vehicles will be cooperative and sending

CPMs. The evaluation is repeated 10 times and either 20%

or 40% of the other 15 vehicles are randomly assigned as

cooperative vehicles. The scenario consists of one complete

passage through the intersection of the ego vehicle. Only the

vehicles within a radius of 100m around the ego vehicle are

evaluated. These represent the most relevant objects to have

sufficient situational awareness.

The LP as well as the CP is affected by increasing rain

intensities. It can be seen that the CP20 improves the per-

ception. The improvement is not that big as the cooperative

vehicles are randomly selected and some of the cooperative

vehicles are driving away from the intersection and do either

not perceive relevant objects or are outside the evaluation

range. CP40 adds an additional 10% compared to CP20.

However, the improvement of CP can be seen and especially

with higher rain rates the detection rate of vehicles stays

clearly above LP.

C. Highway scenario

The last scenario evaluated is a three-laned highway

consisting of the ego vehicle and 20 others. The 21 vehicles

are spread over a distance of 400m along the highway. The

ego vehicle is approximately in the center of this 400m wide

area. For the evaluation the vehicles 100m in front and 100m

behind are considered. Similar to the intersection scenario the

equipment rate for CP of this scenario will be set to 20% and

40%. Again the scenario is repeated 10 times and either 20%

or 40% of the present 20 vehicles without the ego vehicle

are randomly selected as cooperative.

This scenario shows the most significant difference be-

tween LP and CP. The LP is strongly affected by increasing

rain rates. This may be caused due to higher number of

vehicles as well as the greater distances between the vehicles,

which make detection more difficult at higher rain rates.

Both equipment rates CP20 and CP40 are much more robust

against induced rain and have a less drastic decrease in

perception rates. On average CP20 achieves a 15% higher

detection rate than LP and CP40 performs on average 21.8%

better than LP. However, the CP is also influenced by rain,

although not so strongly as LP.

VI. CONCLUSION & OUTLOOK

In this paper we presented a new approach to test the

influence of adverse weather conditions on a whole cooper-

ative perception chain on the example of rain variations. It

has been shown that local perception as well as cooperative

perception are affected by rain in different scenarios, whereas

cooperative perception has clearly been more robust due



to its extended perception range. The evaluation results

have demonstrated the necessity to consider adverse envi-

ronmental conditions in the development phase of local and

cooperative perception systems.

In the future we are going to use the presented approach

to investigate existing algorithms for cooperative perception

regarding their environmental robustness. Furthermore this

approach is going to be used to develop new robust algo-

rithms for cooperative perception. We aim to use a more

diverse set of local perception algorithms such that not all

vehicles execute similar algorithms to further increase the

robustness of our approach as well as the to be implemented

cooperative perception algorithms. We are going to include

the simulation of additional weather conditions like snow

and fog to the camera sensor and further improve the rain

simulation for stereo vision. In addition, more environmental

aware sensor models such as radar will be added to our ap-

proach to perform a more realistic robustness investigation of

perception systems as autonomous vehicles rely on multiple

sensors.
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