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Abstract— Convolutional Neural Networks (CNNs) achieve
high accuracy in vision-based object detection tasks. For their
usage in the automotive domain, CNNs have to be robust against
various kinds of natural distortions caused by different weather
conditions while state-of-the-art datasets like KITTI lack these
challenging scenarios. Our approach automatically identifies
corner cases where CNNs fail and improves their robustness
by automated augmentation of the training data with synthetic
rain variations including falling rain with brightness reduction
as well as raindrops on the windshield. Our method achieves
higher performance upon validation against a real rain dataset
compared with state-of-the art data augmentation techniques
like Gaussian noise (GN) or Salt-and-Pepper noise (SPN).

I. INTRODUCTION

Verifying functional safety of fully automated and au-

tonomous vehicles is one of the most important challenges of

the coming years in the automotive domain. Such a vehicle

has to operate not only under ideal conditions, but also

under challenging and unforeseeable situations. Advances

in the development of neural networks are one of the key

factors to enable autonomous cars. Especially the validation

of neural networks remains a serious problem for the car

manufacturers. Even with the recommended 109 km for

ISO 26262, which an autonomous vehicle should cover for

qualification [1], it is almost impossible to cover all kinds of

input variations for such neural networks.

Recent news about fatal accidents with autonomously

driving vehicles show that these systems are still not reliable

under very common conditions like driving on a freeway

or at night [2], [3]. Hence, it is important to improve the

verification process of such systems to guarantee robust

algorithms and enable functional safety. Formal verification

of robustness is currently impossible for larger networks [4].

A pixel based semantic verification does not allow any

statement about the robustness because one misclassified

pixel does not affect functional safety. Hence, the functional

safety has to be verified on a more abstract level with mean-

ingful properties [5]. For robustness verification of neural

networks it is crucial to cover as many different scenarios

and environmental conditions as possible. The collection of

this data on the road represents a tough challenge as it

is impossible to collect reproducible scenarios containing

environmental influences like rain, snow or fog. Furthermore,
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existing datasets like the KITTI Vision Benchmark Suite [6],

Cityscapes [7] or the recently released ApolloScape [8]

lack environmental influences and only contain images with

good weather conditions. For verification under challenging

weather conditions, such conditions must be present in

the validation phase of neural networks. Moreover, for a

robustness optimization these weather influences have to

be considered in the training phase as well. A feasible

approach is to use current datasets like KITTI or Cityscapes

and synthetically induce weather conditions to evaluate and

optimize neural networks. This allows to extend already

existing real scenarios with realistic variations of virtual

rain to realize an augmented dataset containing all desired

conditions. A benefit of these augmentation approaches are

comparable and reproducible results.

In this paper we present an approach to extract the func-

tional boundaries of neural networks by applying synthetic

rain variations on the KITTI dataset. We first show that

our synthetic rain model produces equal effects on object

detection algorithms like real rain. The robustness evalu-

ation and optimization of neural networks will be shown

on Faster-RCNN [9] and YOLO [10] as an example. The

results of the optimization with synthetic rain variations are

compared against the optimization with Gaussian noise (GN)

and/or Salt-and-Pepper noise (SPN). This comparison will

be performed on a real rain dataset, which is described

in section VI. Additionally an already robust network,

RRC [11], will be compared against the optimized versions

of YOLO and Faster-RCNN. The workflow of this approach

is illustrated in Figure 1.

II. RELATED WORK

Research on CNN-based object detection methods mainly

focuses on improving the accuracy. Yet, there are still other

important issues to consider before the deployment of such

methods in an autonomous vehicle is possible: The runtime

of the networks, the size of the network model and espe-

cially the robustness of such networks are equally important

factors. Neural networks have to operate in all kinds of

conditions present on streets. Hence, they have to be robust

against environmentally induced noise.

To test the robustness of neural networks against different

kinds of noise, Dodge and Karam [12] investigated how noise

like blurring and image compression affects state of the art

networks. They showed that noisy images have strong effects

on classification tasks. Da Costa et al. [13] analyzed the

impact of three different noise types (Gaussian-, Poisson-

and Salt-and-Pepper noise) and showed how denoising can
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Fig. 1: Workflow of robustness optimization and evaluation by simulating rain variations.

partially compensate the performance drop. Nazaré et al. [14]

investigated the influence of disturbances such as GN and

SPN on CNNs. Their results have shown that the classifi-

cation accuracy of CNNs decreases with the introduction of

noise to the image to be classified.

In general, the accuracy of CNNs largely depends on the

used training dataset and network architecture. To generate

additional training data, image transformations are often ap-

plied to existing training data. Montserrat et al. investigated

various methods to extend the training dataset and thus

increase the accuracy of the CNNs in [15]. They presented

an approach to extend the training set by applying geometric

and color transformations as well as blur and noise to the

training data to gain a more robust recognition. The authors

in [16], [17] also investigated the influence of disturbances

in the input data and tried to improve the accuracy of the

CNNs by deliberately including noisy images in the training

process. Dresossi et al. introduced a counterexample-guided

data augmentation framework [18]. They used a virtual

environment to automatically generate scenes and identify

counterexamples which are misclassified by the neural net-

work to extend the datasets with these counterexamples.

They generated virtual scenes by varying the number of cars,

their positions, the image brightness, sharpness and contrast.

Zheng et al. [19] focused on the effects of typical image

processing tasks such as compression, rescaling and cropping

on state of the art Deep Neural Networks (DNNs). They

proposed a new network architecture, which is more robust

against the aforementioned noise types and automatically

considers altered images within the training phase. Most of

the approaches in [12]–[14], [16] only investigate generic

sources of error such as GN, blur or SPN to evaluate and

improve CNNs and do not generate realistic environmental

influences, which would occur in reality.

For more realistic disturbances a recent work from Hasir-

lioglu and Riener [20] modeled effects of rain on cam-

era sensors. They pre-computed a noise filter mask for a

camera sensor by distributing water drops within the field

of view of the camera. This mask was applied to a static

scene and compared against artificial rain with an intensity

100mm/h produced by an indoor test system. A weakness

of their approach is that depth information is only used for

generating the filter mask and neglected within the image

to be augmented. This results in one static mask and a

big visual difference between artificial and simulated rain.

Another approach to achieve more robust object detection

was introduced by Mukherjee et al. in [21]. They tried to

eliminate rain on images with a CNN trained on images

with simulated rain. Their rain model used depth maps

generated from monocular images resulting in inaccurate

depth information and unrealistic rain.

With DeepTest, Tian et al. [17] presented a methodol-

ogy to automatically evaluate autonomous driving DNNs

with augmented data to detect erroneous behaviors. In their

method they considered weather scenarios like rain, fog and

lighting conditions to test DNNs for robustness. Nevertheless

the induced synthetic rain was not realistically generated.

They used just one specific rain model and applied it to all

images without taking depth information of the scene into

account. Furthermore they lack a method to improve the

robustness of the evaluated DNNs. Similarly to DeepTest,

DeepXplore by Pei et al. [22] also detected erroneous

behavior of neural networks by augmentation of the input

images. They induced rectangles onto images or changed

lighting conditions. Contrary to Tian et al. they additionally

performed an optimization by augmenting training data and

achieved an improved detection accuracy.

Another methodology is the usage of Generative Adver-

sarial Networks (GANs) to improve the robustness of neural

networks. Luc et al. [23] have shown an application of

adversarial training on semantic segmentation to improve

labeling accuracy and reduce overfitting. Fischer et al. [24]



presented a first approach to perform adversarial attacks

on semantic segmentation. They induced noise with an

adversarial attack such that the neural network was unable

to detect pedestrians. The network segmented a drivable

corridor right through the present pedestrians. Their work

showed the need of robust neural networks such that they are

able to correctly detect road users even in the presence of

noise. Arnab et al. [25] used adversarial attacks to perform a

robustness evaluation on neural networks. Karacan et al. [26]

used GANs in combination with semantic image information

to synthetically generate different environmental conditions.

However, the augmentation techniques used in [17], [22],

[24]–[26] are not proven to be realistic and lack a comparison

against disturbances from real life scenes. A validation using

metrics of image processing algorithms to investigate if

augmentation techniques produce equal effects as e.g. real

rain on machine vision is necessary to allow the use of these

augmentation techniques for robustness improvement.

III. EVALUATION AND OPTIMIZATION WORKFLOW

The proposed workflow as illustrated in Figure 1 consists

of two stages. After the neural network to be evaluated and

optimized has been trained on the initial dataset, the robust-

ness against synthetic rain variations is evaluated. Therefore,

the original dataset gets augmented with variations of syn-

thetic rain including brightness reduction, falling rain and

raindrops on the windshield. The exact augmentation proce-

dure is explained in section IV-A. In the evaluation phase,

defined parameter ranges are investigated which specify the

synthetic rain. After identification of critical parameters, the

original dataset gets extended in the optimization phase.

Images augmented by synthetic rain variations specified by

the before identified critical parameters get added. Finally,

the neural network gets retrained on the extended dataset.

IV. ROBUSTNESS EVALUATION

The evaluation is based on Faster-RCNN and improved

YOLO in version 3 (YOLOv3) [27]. Faster-RCNN is a well

known artificial neural network for object detection. It is

the basis for many current object detection approaches like

YOLO and part of the pedestrian detector in [28]. It consists

of two networks, a Region Proposal Network (RPN) followed

by the actual Faster-RCNN detector network.

For training the KITTI dataset from Geiger et al. [6] is

employed, which supplies labeled traffic scenes. The data

was split into two disjoint sets. A training set with 6800

images and a test set with 468 images. The test set contains

only 468 images as this set is used to identify critical

parameters for later data augmentation. The actual evaluation

will be performed on a bigger real world dataset containing

heavy rain scenes.

Faster-RCNN was trained on all KITTI labels containing

car, pedestrian, person sitting, truck, van, cyclist, tram and

misc. For training the 4-step alternating training as presented

by Ren et al. in [9] was used. With this training method the

RPN and Faster-RCNN network are trained alternately. In

the first two steps RPN and Faster-RCNN detector network

(a) Image of scene without rain. (b) Image of scene with real rain.

(c) Image of scene with synthetic rain. (d) Real rain vs. synthetic rain.

Fig. 2: Comparison of our synthetic rain and brightness

augmentation technique against real rain.

will be trained after they got initialized with a pre-trained

ImageNet model. The Faster-RCNN detector network addi-

tionally uses the region proposals from RPN for initialization

in step two. In step three and four the shared convolution

layers among RPN and the Faster-RCNN detector network

will be fix and not updated anymore. Only the RPN unique

layers in step three and the specific layers for the detector

network in step four will be fine-tuned. Step one and three

for RPN were trained for 80k iterations and step two and

four for Faster-RCNN were trained for 40k iterations.

Like Faster-RCNN, YOLOv3 was trained on all KITTI

labels. For training the darknet neural network framework

with a binary cross-entropy loss for class prediction was used

as proposed in [27]. YOLOv3 originally works on images

with a size of 608x608 pixels. We adapted the network

to work with images of size 1152x312 pixels so that the

proportions fit to the KITTI dataset. We trained YOLOv3

for 40k iterations with a learning rate of 0.00001.

To enable a comparison of our optimization approach

against an already robust network we trained RRC [11]

on all KITTI labels as well. To train RRC the presented

method and parameter configuration from [11] was utilized.

For the baseline training of these three neural networks (no

augmentation of training data) the same disjoint split in

training and test set of the KITTI dataset was used.

A. Data augmentation through variations of synthetic rain

The first step for robustness evaluation is to investigate

the influence of data augmentation on the performance of

the previously trained neural networks on the mentioned

KITTI-based datasets. To reconstruct the 3D scene from left

and right images from the KITTI dataset the Slanted Plane

Smoothing Stereo algorithm of Yamaguchi et al. [29] is used.



Instead of using standard noise distributions as proposed

in [12]–[14], [16] or simply one specific rain filter as

in [17], we use variations of realistic synthetic rain to modify

the datasets and evaluate the robustness. The augmentation

consists of two steps, the generation of falling rain followed

by rendering raindrops on the windshield. The methodology

for generation of synthetic falling rain on images has already

been described in the work of Hospach et al. [30]. In sum-

mary, scene depth is used to reconstruct a 3D representation

of the input images, then rain streaks are distributed in the

space between camera and background respecting physical

properties. For the generation of raindrops on the windshield

the approach presented by von Bernuth et al. [31] was

used. Similar to [30] the scene depth is used to reconstruct

the 3D scene. Then raindrops are distributed on the virtual

windshield and raytracing is used for a physically correct

rendering of these raindrops on the virtual windshield.

We show the visual realism of the synthetic rain model

by comparing the same scene without rain (2a), with real

rain (2b) and with synthetic rain (2c). For better visibility

the same image extract is enlarged in (2d). The real rain

image (2b) as well as the synthetic rain (2c) have identical

rain streaks, blur effects and drops, showing that the used

rain model produces similar optical effects as real rain.

Before we start the evaluation of Faster-RCNN and

YOLOv3 we perform a deeper validation of the used rain

model for falling rain. After capturing many measurements

containing real rain it has been observed that rain has a

significant influence on metrics of basic image processing

like for example Harris features [30]. Therefore, these basic

image processing algorithms applied on artificial rain have

been compared to the metrics on real rain images of the

same scene. Many complex image processing algorithms are

assembled using such basic algorithms. Faster-RCNN for

example utilizes edge detectors for feature extraction on the

first layers. Hence, edge detection based algorithms (SURF,

Canny, Harris, Sobel) allow a deliberate generalization for

validating the realism of this rain generation model. The

original publication by Hospach et al. [30] already contains

validation results of one image set containing real rain

scenes. This has now been extended by two additional

validation sets of different rain intensities. To acquire the

images for validation, the following setup has been used: A

series of images of a well-textured scene containing enough

edges and corners for algorithms to detect was recorded

under real rain (denoted as RefReal). The rain intensity

was averaged during acquisition (in this example: cumulated

intensity of 52mm/h, averaged over a time period of 15

minutes). Immediately after rain has stopped, another image

sequence of the same scene without rain has been acquired

(denoted as RefClean). Using RefClean as input, syntheti-

cally simulated rain variations with intensities of 10mm/h,

40mm/h, 70mm/h and 100mm/h (denoted as SimX) have

been generated and compared against RefClean and RefReal.

The correct correspondences of the 20 best Harris features

of seven randomly chosen frames were compared against

a separate reference image of RefClean. The average of

(a) Robustness of the Faster-RCNN baseline against rain and
brightness variations.

(b) Robustness of the YOLOv3 baseline against rain and bright-
ness variations.

Fig. 3: Robustness evaluation for the two neural networks to

be optimized.

TABLE I: Detection results of Faster-RCNN network on

KITTI validation test set over all augmentation variations.

mean min max std-dev mean
Network AP AP AP AP AA

Faster-RCNN 41.45% 2.92% 52.67% 10.49% 44.47%
YOLOv3 33.74% 0.19% 48.07% 12.60% 57.26%

correctly identified correspondences in RefReal dropped to

15.71 from originally 16.27 in RefClean. Sim40 was closest

to RefReal with an average of 15.57 correct correspondences,

while Sim70 has shown a more extreme drop to 13.86 corre-

spondences, respectively 13.14 correspondences for Sim100.

A simulation run without rain streaks, denoted as Sim0 has

shown that the simulation itself does not generate unwanted

side effects during simulation. Its metric value of 16.27 is

equal to RefClean.

Other validation results were in close agreement with

the presented example, showing that the used model for

generating synthetic rain variations produces similar effects

compared to real rain. This is of great importance as the

following results of this work make use of this assumption.

B. Parameter space exploration

The parameter space to generate scenarios of the critical

situations was explored using grid search. In our example, we

have six parameters for data augmentation with synthetic rain



TABLE II: Parameter ranges for data augmentation in the

evaluation and optimization phase of our workflow.

Case Parameters Value intervals

GN µ [10, 50]
σ [1, 20]

SPN density [1%, 30%]

GN µ [10, 50]
& σ [1, 20]

SPN density [1%, 30%]

Synthetic rain intensity ri (evaluation) [0mm/h, 80mm/h]
rain rain intensity ri (optimization) [30mm/h, 80mm/h]

rain angle ra [−30◦, 30◦]
brightness rb (evaluation) [25%, 200%]
brightness rb (optimization) [40%, 100%]
drop count dcount [1000, 2000]
mean drop radius dµ [0.3mm, 0.8mm]
std dev of drop radius dσ [0.25mm, 1.25mm]

including raindrops on the windshield in front of the camera

sensor. Falling rain is specified by the rain intensity ri in

mm/h, the angle of falling rain ra, and brightness relative

to the original image rb. The drops on the windshield are

specified by the drop count dcount, the mean radius of the

drops dµ and the standard deviation of the drop radius dσ .

Larsen et al. [32] showed hourly precipitation extremes up to

40mm/h are possible and have already been investigated in

Europe in 2018 (e.g. in June 2018 in southwest of Germany).

To cover even the most extreme weather situations we used

rain intensities from 0 to 80mm/h with a step size of

10mm/h for robustness evaluation. We varied the angle of

the falling rain from -30◦ to 30◦ with step size of 15◦ and

the brightness from 25% to 200% with step size of 25%.

The number of present drops dcount on the windshield were

assumed to be independent of the rain intensity. The number

depends on the frequency of the windshield wiper. Therefore

we chose a total number of drops randomly between 1000

and 2000. This number represents the drop count on the

virtual windshield. As the camera is mounted close to the

virtual windshield only a subset of these drops will actually

be rendered and visible on the image. In our case the camera

is mounted 10 cm behind the virtual windshield and the

windshield has an angle of 63°. The mean dµ and standard

deviation dσ for the drop radii was calculated in relation to

the current rain intensity with the following two equations 1

and 2. The relationship between rain intensity and drop size

was approximated with the drop size distribution presented

in [33, p. 12]. All parameter ranges, which were used for

evaluation are shown in Table II.

dµ = 0.3mm+ 0.5mm ·

ri
max(ri)

(1)

dσ = 0.25mm+ 1mm ·

ri
max(ri)

(2)

C. Performance evaluation

To evaluate the quality of object detections the well known

average precision (AP) metric is used. Other established

benchmarks, such as KITTI [6] or COCO [34], use AP

as well to evaluate detection algorithms. Therefore, we use

this metric to provide comparable results. The AP metric is

described by Everingham et al. in [35]. For the AP metric

the area under the precision recall curve gets calculated. The

intersection over the union of predicted bounding boxes and

ground truth is needed to determine recall and precision

values. If the overlap of those boxes is greater than the

specified threshold the detection counts as true positive (TP).

The difference between evaluation in [35] and our method

is that we use a strict threshold of 70% for detections to

count as TP. Furthermore, we do not distinguish between

different classes and use the same threshold for all existing

class labels in KITTI. Duplicate detections will count as

false positive (FP). To measure the detection quality of

the neural networks, we also evaluate the average accuracy

(AA) known from [35]. AA denotes the ratio of TP object

detections to all by the neural network detected objects

including TP, FP and false negative (FN) ones by evaluating

AA = TP/(TP + FP + FN).
The evaluation result to identify the influence of synthetic

rain variations on the AP of Faster-RCNN is illustrated in

Figure 3a and in Figure 3b for YOLOv3 respectively. The

determined AP is plotted over different rain intensities and

brightness adaptations for the augmented KITTI test set. The

rain intensities implicitly include the depending drop radii.

The number of drops is not separately plotted as they are

independent of the rain intensity and chosen randomly. De-

tailed numbers are shown in Table I. Faster-RCNN achieved

a mean AP of 41.45% while YOLOv3 achieved a mean

AP of 33.74% over all rain and brightness variations. We

have trained both networks on all provided KITTI labels

and not only on the three labels car, pedestrian and cyclist

as usually done for the KITTI benchmark. Therefore the AP

of 50.42% (Faster-RCNN) and 48.42% (YOLOv3) without

augmentation are not to be confused with the online available

results. Additionally the online available AP values are given

per class and we evaluate the AP over all classes.

A brightness below 100% and an increasing rain intensity

significantly lowers the detection quality of the investigated

neural network. The most critical situation for Faster-RCNN

(80mm/h rain intensity, 0◦ rain angle, 25% brightness)

resulted in a drop by 94.21% in relation to the AP of 50.42%

with no rain and brightness augmentation. For YOLOv3,

the most critical situation (80mm/h rain intensity, -30◦ rain

angle, 25% brightness) led to a drop by 99.61% compared

to the AP of 48.42% with no augmentation. These results

show that a robustness optimization of neural networks

is necessary. Current state of the art datasets like KITTI

lack weather-influenced scenarios to achieve robust networks

solely from training on these datasets.

V. ROBUSTNESS OPTIMIZATION

To optimize the robustness, we extended the KITTI train-

ing set with augmented data and performed the training

of Faster-RCNN and YOLOv3 again on this new dataset.

This represents the last step in our workflow as illustrated

in Figure 1. The KITTI training set was split as before

in a training set consisting of 6800 images and a test set



(a) Original image extract from
KITTI dataset [6].

(b) Applied synthetic rain ( ri =
80mmh−1, ra = −20◦, rb =
75% and dcount = 1985 ).

Fig. 4: Synthetic rain augmentation technique on KITTI

dataset.

containing 468 images. The whole training set of 6800

images was augmented and added to the original dataset,

resulting in a total of 13600 training images. To compare the

effectiveness of the data augmentation through synthetic rain

and brightness variation, other data augmentation methods

were compared against our approach. Therefore the training

set was also augmented by applying Gaussian noise (GN),

Salt-and-Pepper noise (SPN) and a combination of GN and

SPN. A comparison of an original KITTI image vs our

synthetic rain augmentation is illustrated in Figure 4.

The training set has been extended with variations of the

different augmentations. For synthetic rain six parameters

have to be chosen as in the evaluation phase. These pa-

rameters were already presented in section IV-B. From the

previous evaluation we have identified that only a bright-

ness below 100% affects the neural networks in a negative

manner. The rain intensity of the most critical situation

was identified with 80mm/h. Therefore, we constrained

the intervals for brightness augmentation and rain intensity

to the ranges found as critical in the evaluation phase.

Furthermore, we also restricted the lower bound of the

brightness augmentation to 40% as this has been shown to

be more effective compared to lower brightness values. The

lower bound of rain intensity was raised to 30mm/h, as

challenging situations only occurred above this rain intensity.

All parameter ranges for generating the augmented train-

ing sets are illustrated in Table II. The exact parameter values

for every augmentation technique were randomly chosen for

each image within the specified parameter ranges to generate

a training set of various conditions, except for dµ and dσ .

The parameters dµ and dσ were calculated according to the

randomly chosen rain intensity with equations 1 and 2. To

be able to reproduce the augmentation the random number

generator was seeded. Finally, the initial training set gets

extended by the varied training data.

VI. THE REALRAIN DATASET

In order to prove that the optimization with synthetic rain

variations also applies under real conditions, a validation

on the basis of real scenes is necessary. Existing datasets

like KITTI or Cityscapes are lacking necessary weather-

(a) Examples containing rain streaks and blur.

(b) Examples containing rain streaks, blur and rain drops on
the windshield.

Fig. 5: Comparison of ground truth (blue), Faster-RCNN

baseline detection (red), optimization with GN and SPN (yel-

low) and our optimization with rain and brightness variations

(green) on example images taken from our realrain dataset.

influenced scenarios, which are needed for this validation.

Hence, we started to collect images of challenging rainy road

scenes from our archive of self-conducted test drives and

from dashcam videos on YouTube. The result is a dataset

of international scenes. In the following, we call it realrain

dataset. The realrain dataset contains 2062 labeled images

consisting of 9551 labeled objects. It has been subclassified

into 7368 cars, 626 vans, 955 trucks, 395 pedestrians, 205

cyclists and one tram. The scenes are well spread from urban

to highway scenarios and contain heavy rain, mist and drops

on the windshield representing challenging environmental

conditions for vision based object detection systems.

VII. RESULTS

The final evaluation of our optimization was performed

on the realrain dataset which solely was used for validation.

The detection comparison of the baseline, GN and SPN

optimization and our optimization on four sample images for

Faster-RCNN on the realrain dataset is illustrated in Figure 5.

It is quite remarkable that solely our optimized CNN was

able to detect with raindrops obstructed vehicles in Figure 5b.

The results of these tests are presented in Table III. We can

see that our optimization performs best for YOLOv3 as well

as for Faster-RCNN considering AP. Second best is GN.



TABLE III: Average precision and accuracy results for Faster-RCNN, YOLOv3 and RRC on the evaluation of our realrain

dataset and the original KITTI test set.

Real Rain Dataset KITTI Test Set

Neural Training absolute absolute AP AA absolute absolute AP AA
Network Method AP AA change change AP AA change change

F
as

te
r-

R
C

N
N Baseline 7.48% 36.22% 0.00% 0.00% 50.42% 41.87% 0.00% 0.00%

GN 10.20% 38.08% 2.72% 1.86% 51.02% 42.90% 0.60% 1.03%
SPN 7.62% 39.93% 0.14% 3.71% 48.82% 40.78% -1.60% -1.09%

GN and SPN 9.96% 37.62% 2.48% 1.40% 49.59% 40.98% -0.83% -0.89%
Synthetic rain variations 11.85% 34.55% 4.37% -1.67% 49.95% 42.27% -0.47% 0.40%

Y
O

L
O

v
3

Baseline 5.15% 37.96% 0.00% 0.00% 48.42% 60.93% 0.00% 0.00%
GN 10.30% 42.26% 5.15% 4.30% 45.51% 58.25% -2.91% -2.68%

SPN 3.40% 43.95% -1.75% 5.99% 37.72% 59.36% -10.70% -1.57%
GN and SPN 5.10% 42.33% -0.05% 4.37% 39.61% 56.19% -8.81% -4.74%

Synthetic rain variations 12.48% 38.49% 7.33% 0.53% 47.79% 59.86% -0.63% -1.07%

RRC Baseline 12.97% 64.33% - - 74.60% 74.60% - -

We improved the unoptimized detection by 4.37 percentage

points for Faster-RCNN and by 7.33 percentage points for

YOLOv3. In comparison to the second best optimization

with GN we achieved an improvement of 1.65 percentage

points for Faster-RCNN and 2.18 for YOLOv3. When we

look at the AA of the baseline, it can be seen that the AA

decreases by 1.67 percentage points for the optimized Faster-

RCNN with synthetic rain variations but gets improved

for the optimized YOLOv3 by 0.53 percentage points. The

optimization with SPN performs best for the AA metric but

also has the worst results considering AP. When it comes to

safety under adverse weather conditions not perceiving an

obstacle is more severe than false positive detections which

e.g. could result in additional breaking maneuvers. Therefore,

in our opinion, the AP metric is more relevant than the

AA metric for assessing a detectors performance because

it considers recall as well as precision.

Furthermore, we compare our two optimized networks to

the already robust RRC network. This network is one of the

best performing neural networks on the KITTI dataset and

enables a good assessment of our results. RRC was ranked

seventh place on the KITTI 2D object detection benchmark at

the time this paper was written, while YOLOv3 was placed

111th and FasterRCNN 135th. RRC achieves a mean AP

of 74.60% on the KITTI testset. This is a lower mean AP

value compared to the online available results on the KITTI

benchmark website as we trained RRC on all labels and not

separately for cars and cyclists together with pedestrians.

However, on the realrain dataset RRC only detects 12.97% of

the labeled road users correctly showing that even robust net-

works are incapable of handling adverse weather conditions.

Both with rain variations optimized neural networks achieve

similar performance like RRC in AP on the realrain dataset,

although the unoptimized versions perform drastically worse.

Many data augmentation techniques to enlarge the training

set decrease the performance on the original dataset. There-

fore we also evaluated the performance of our optimized

neural networks on the KITTI test set. The evaluation was

performed on the original, not augmented version of the test

set to provide an insight into how the data augmentation

affects the performance on the original dataset. The results

are illustrated in Table III. It can be seen that the optimization

with synthetic rain variations almost has no negative effect

on the performance on the original KITTI test set. The AP

for Faster-RCNN got decreased by 0.47 percentage points

and for YOLOv3 by 0.63 percentage points. Looking at the

augmentation with GN, the performance of Faster-RCNN

increases while it decreases for YOLOv3. The remaining

two augmentation techniques including SPN worsen the AP

performance slightly for Faster-RCNN but significantly for

YOLOv3.

These results show that our approach not only improves

the performance of neural networks on the completely dif-

ferent realrain dataset but also maintains the performance on

the original dataset. Therefore, we were able to show that

the introduction of large variations of synthetic rain into the

training process increases the robustness of neural networks

against heavy rainfall in real life.

VIII. CONCLUSION AND OUTLOOK

In this paper, we presented a new methodology to evaluate

and improve deep neural networks by data augmentation

through large variations of synthetic rain. We have shown

that current datasets like KITTI are not sufficient to train a

robust neural network. The average precision can drop down

to 2.92% for Faster-RCNN and 0.19% for YOLOv3 under

extreme conditions if the training data does not cover enough

scenarios containing bad weather conditions.

Our approach allows for a more precise and focused

evaluation as well as training against varying environmental

conditions. By means of data augmentation of the KITTI

dataset, we achieved an increase of AP by 4.37 percentage

points for Faster-RCCN and 7.33 percentage points for

YOLOv3 respectively on real rain scenes. This shows the im-

portance of variation in environmental conditions in training

data to gain more robust neural networks. Our results look

promising and outperform state of the art data augmentations

approaches like GN and SPN. This kind of scenario driven

augmentation of training data will allow to overcome training

weaknesses and enable a targeted evaluation of systems



e.g. for system qualification according to automotive safety

integrity level (ASIL).

In the future, we will improve our data augmentation meth-

ods by a simulation of additional environmental influences

like snow and fog to further increase the robustness. To con-

firm the generality of our approach we also want to apply the

data augmentation of training data to other neural networks.

We will also focus our future work on a more sophisticated

parameter selection in the data augmentation step to refine

the methodology for systematic scenario generation without

loss of generality. We would like to investigate how a guided

parameter selection with Monte Carlo simulation combined

with importance sampling can improve the augmentation.

Furthermore, we will try to collect the permissions to publish

the final realrain dataset.
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