
A Hardware-assisted Approach for Non-invasive and
Fine-grained Memory Power Management in MCUs

Michael Kuhn , Patrick Schmid and Oliver Bringmann
Embedded Systems, University of Tübingen, Germany

Abstract—The energy demand of embedded systems is crucial
and typically dominated by the memory subsystem. Off-the-
shelf MCU platforms usually offer a wide range of memory
configurations in terms of overall memory size, which may differ
in the number of memory banks provided. Split memory banks
have the potential to optimize energy demand, but this often
remains unused in available hardware due to a lack of power
management support or require significant manual effort to lever-
age the benefits of split-banked memory architectures. This paper
proposes an approach to solve the challenge of integrating fine-
grained power management support automatically, by a combined
hardware/software solution for future off-the-shelf platforms. We
present a method to efficiently search for an optimized code
and data mapping onto the modules of split memory banks to
maximize the idle times of all memory modules. To non-invasively
put memory modules into sleep mode, a PC-driven power manage-
ment controller (PMC) autonomously triggers transitions between
power modes during embedded software execution. The evaluation
of our optimization flow demonstrates that memory mappings can
be explored in seconds, including the generation of the necessary
PMC configuration and linker scripts. The application of PC-
driven power management enables active memory modules to
remain in light sleep mode for approximately 13% to 86% of
the execution time, depending on the workload and memory
configuration. This results in overall power savings of up to 24%
in the memory banks, in terms of static and dynamic power.

Index Terms—Energy efficiency, Low-power electronics, Mem-
ory architecture, Embedded systems, Computer architecture

I. INTRODUCTION

Smart embedded devices permeate throughout many aspects
of industrial processes, as well as our personal lives. Those
devices are often microcontroller-based small-footprint devices
which process data from a few numbers of sensors and option-
ally drive some actuators or send the processed data to other
devices. Two aspects are important to consider when planning
and designing sensor devices on a large scale – the development
cost and the energy costs for powering the devices.

Application-specific power management offers great poten-
tial for low-energy computing in embedded devices, in con-
trolling the power modes of specifically enhanced architec-
tural components by the use of many different techniques
(i.e., adjusting clock frequencies, clock gating, power gating,
body biasing, . . .) on different domains of the system (i.e.,
processor core, periphery, memory subsystem, . . .). Typically,
the software running on these devices can make use of the
power-management techniques by triggering Power Modes
(PMs) provided by a Power Management Controller (PMC).

This work has been partly funded by the German Federal Ministry of
Education and Research (BMBF) in the project Scale4Edge under reference
no. 16ME0122-140.

Since modern sensor applications frequently rely on memory-
intensive data-processing algorithms, the impact of the memory
subsystem is becoming a dominant factor on the overall energy
demand of the system and should therefore be the focus of
optimization efforts. For many embedded products, application-
specific hardware/software design is too costly, so off-the-
shelf Micro Controller Units (MCUs) are used. However, many
MCUs have only very few physical memory banks, which limits
the possibilities to apply power management, or have no, or
only limited, possibilities for fine-granular power management
for the on-chip memory, even if the memory banks are divided
into multiple physical memory modules. For example, the
Ambiq Apollo4 Blue Plus has three different directly accessible
memory banks (TCM, Extended SRAM, Shared SRAM), and
offers the possibility to configure which memories should be
powered down in dependence on the system’s power state.
Therefore, it would be beneficial, that off-the-shelf ultra-low
power MCUs implement the system memory with split banks,
where the PMs of each memory module can be triggered
individually. The RP2040 and RP2350 MCUs, used in the
Raspberry Pi Pico family, have already implemented this ar-
chitecture. Each module’s power state in the split main system
memory bank can be controlled manually via a configuration
register [1], [2]. The remaining issue with their solution is,
that the software code has to be instrumented with additional
statements to trigger PMs switches of the memory. Depending
on the built-in memory, putting it in a sleep mode is profitable
after only a few CPU clock cycles. To apply power management
to existing hardware on the granularity of only a few clock
cycles, the software code has to be altered heavily, which is
not only inconvenient, but also changes the run time and energy
demand of the software.

In order to implement a non-invasive and fine-grained
memory power management, we propose a combined hard-
ware/software solution for future off-the-shelf platforms. An
overview of our solution is shown in Fig. 1. This solution entails
the extension of existing MCU architectures by integrating a
PMC, that is configured prior to the runtime of the target
application, and then driven by the MCU’s Program Counter
(PC) to autonomously issue power mode changes. To comple-
ment that, we present a software toolkit that is designed to
adapt the target software automatically to this architecture by
generating an optimized memory mapping and a sleep schedule
for the PMC. Code and data objects are mapped to the memory
modules in a manner that maximizes the idle time for each
memory module of the System-on-Chip (SoC). The mapping

https://orcid.org/0009-0009-9884-9590
https://orcid.org/0009-0009-7896-6351
https://orcid.org/0000-0002-1615-507X

Data Memory

Bank

Code Memory

Bank

Core

PC

1: int d_0[LEN];
2: int d_1[LEN];
3:
4: int main() {
5: init ();
6: while(1) {
7: run_0();
8: run_1();
9: }

Generate Mapping & Sleep Schedule

PMC

Bank ConfigPC-Address

(mode0, en0),…0xdeadbeef

……

(mode0, en0),…0xcafebabe

Fig. 1. PC-driven memory power management with an application-specific
sleep schedule

is realized via an automatically generated linker script. Then,
a PMC sleep schedule is created with the purpose of using the
idle times to issue sleep modes, thus minimizing the memory
on-time. The generated configuration is included in the target
software along with the necessary PMC setup-code.

II. RELATED WORK

Existing work, tackling the optimization of the energy de-
mand of a systems’ memory, mostly relies on the fact, that the
energy demand of Static Random Access Memories (SRAMs)
typically varies with the size, which is especially useful on sys-
tems with a memory hierarchy. For example, in [3], the authors
combine task scheduling for real-time applications on multicore
systems with an efficient use of local and shared memories.
However, optimization approaches for systems that feature a flat
memory hierarchy, can be categorized into approaches targeting
systems with or without Scratchpad Memories (SPMs). A
great part of the existing literature is based on the concept
of SPMs, which are not in the scope of the present work.
The method described in [4] involves dynamically copying
instruction data into SPM during execution. In contrast, [5]
focuses on optimizing the data mapping for pipelined streaming
applications. The authors of [6] propose a mapping scheme for
code and data that performs comparable to hardware caches.
Additionally, [7] examines an efficient data mapping to a
hybrid SPM composed of SRAM and non-volatile memory to
minimize energy demand. These papers mainly focus on the
optimization of the performance, not the energy efficiency. In
contrast, [8] is focused on the energy demand by an efficient
data allocation on a scratchpad consisting of volatile and non-
volatile memory.

There are also some papers which focus on a classic MCU
memory hierarchy, consisting only of separated code and data
memories. Pallister et al. propose in [9] a method to find and
apply an energy-efficient mapping of parts of the instruction
code from the code memory, realized with flash, to the SRAM,
exploiting the fact that read accesses to the SRAM demand less
energy than accesses to the flash memory. The optimization is

implemented on binary Basic Block (BB) level, therefore each
relocated BB causes the need for rewriting jump targets in the
target software. Power management is not discussed in this
paper. Ozturk et al. [10] propose an approach to fit software
to unequally sized banked memory architectures with the help
of an ILP solver in order to apply power management to the
memory DRAM banks, with the objective of saving energy.
To achieve this, they employ data migration, compression and
replication, which results in significant code modifications to
the target software. Furthermore, a customized compiler is
required. Steinfeld et al. [11] propose to split the main system
memory in equally sized banks for event-driven applications
and found that in terms of the energy demand, the split is
beneficial with an adjusted mapping. However, it is not dis-
cussed how transitions to sleep modes are realized. Transitions
from sleep to active modes are triggered by memory accesses.
Therefore, the approach is invasive in terms of the execution
time. Strobel et al. propose in [12] an approach to optimize
the energy demand for embedded systems, by co-designing the
size and amount of memory modules together with the mapping
of parts of the software to these memories. Their proposed
strategy is based on the concept of holding more frequently
used data in smaller memory modules. This approach is further
developed in [13], where the optimization of static power is
achieved through the implementation of power management in
a second optimization step. The authors present the potential
for scheduling power mode changes at the granularity of clock
cycles but dismiss this approach as impractical.

III. CONSIDERATIONS AND GENERAL APPROACH

In order to provide embedded system developers a tool to
automatically generate an energy-optimized variant of their
software that targets MCUs with split memory banks, we
propose a solution that involves a PC-driven PMC in hardware,
as well as a toolkit that optimizes the software to minimize the
overall memory on-time. For the remainder of this paper, we
assume that the software is running in a bare-metal configu-
ration, that is, without any dynamic task scheduling, but in a
traditional main loop. In contrast to existing work, such as [13],
the main optimization goal of our approach is to minimize the
overall energy demand caused by static power. The rationale for
focusing on static power, as opposed to dynamic power, is that
with shrinking semiconductor fabrication scales, the static share
of the overall power demand of circuits is growing to the point
of eventually becoming a dominant part. Moreover, equally
sized memory modules can be assumed for general purpose
hardware, in which case an optimization of the dynamic power
demand is not applicable by adjusting the memory mapping.
Nonetheless, in our evaluation, we also consider the effects of
our optimization on the dynamic power.

In contrast to existing work, such as [9], we focus on
relocation of code and data at the source-code level for an
efficient memory mapping. This means that entire functions and
data structures are allocated to the available memory modules.
Benefits of this approach are a reduced complexity of the
relocation process, and the possibility to work with unmodified
standard compiler toolchains. This also means that there is no

necessity for specialized tooling to rewrite the source or binary
code. In contrast to the approach proposed by Ozturk et al. [10],
we consider static mappings of code objects, which eliminates
the necessity for data migration at runtime. The generation of
a linker script is sufficient to produce the optimized mapping,
if the compiler is configured to place every function and data
element into a separate section.

To the best of our knowledge, all existing approaches require
the explicit instrumentation of PM transition statements within
the software code, to apply a scheduled transition to a sleep
mode. If a memory module in a sleep mode state is accessed,
the processor pipeline has to be stalled, in order to wait for
the memory to return to an active state. Alternatively, another
explicit statement in the software code has to be introduced.
However, such invasive statements limit the potential for opti-
mization, since every single transition has to be instrumented
in the source or binary code. In many applications, it is
preferable to have a non-invasive approach. Therefore, we favor
an approach that is capable of effecting power mode transitions
without instrumenting the target software code. This objective
can be accomplished by integrating a PC-driven PMC into the
hardware, that autonomously monitors the software execution
on the processor core, and triggers the PM transitions on
predefined instruction addresses.

A. Memory Power management

We assume the built-in memory modules m ∈ M have
several power modes p ∈ P , where P denotes the set of all
available power modes for the memory and M all available
SoC memory modules. Each memory has one active mode,
and at least one sleep mode. For each power mode p, the
memory macro has an average static power rating Pm,p

static.
Entering and exiting a sleep mode p from the active mode leads
to a switching penalty Em,p

switch-penalty, i.e., the energy that is
required during the switching operation. These characteristics
can be derived from data sheets or measurements.

We define the energy savings for memory module m in the
time interval Ti = (ti, t

′
i), with |Ti| = t′i − ti, where sleep

mode p is applied as:

Em,p
saving =

[
Pm,active
static − Pm,p

static

]
· |Ti|. (1)

To maximize the benefits of memory power management, sleep
modes should be used whenever the power savings in an
interval Ti outweigh the PM switching penalty:

Em,p
saving > Em,p

switch-penalty. (2)

For each power mode, we derive the break-even time, from (2):

tm,p
break-even := |Ti| =

Em,p
switch-penalty

Pm,active
static − Pm,p

static

, (3)

as the duration of a sleeping interval, where the energy savings
are equal to the incurred switching penalty. Therefore, a power
mode p should be applied for a memory module m ∈ M during
a time interval Ti in-between two consecutive memory accesses
at timestamps ti and t′i, when:

|Ti| > tm,p
break-even. (4)

B. Mapping optimization

The sleep mode schedule is generally dependent on the
specific memory mapping, since the access patterns to the
memory modules change with the mapping. We define a set
O, which includes all function and data objects of the target
software. A code mapping:

X = {(o,m)|o ∈ O} ⊂ O ×M
all possible assignments

(5)

is a set of tuples that assigns each object to exactly one memory
module m ∈ M. For each object o ∈ O, we define

Io = {T0, T1, . . . , }, (6)

as the set of time-intervals between consecutive memory ac-
cesses to the object o. Given a mapping X , we define the time-
intervals where the memory module m is not accessed by the
processor core as:

IX
m =

⋂
o∈{o′|(o′,m′)∈X :m′=m}

Io. (7)

For example, assuming a mapping X = {(o0,m), (o1,m)} ⊂
{o0, o1}×{m}, with Io0 = {(0, 5)} and Io1 = {(2, 8)}, the set
of time-intervals where no access on memory m takes places
is then defined as:

IXm = Io0 ∩ Io1 = {(0, 5)} ∩ {(2, 8)} = {(2, 5)}.

Our optimization goal is to find a mapping X ∈ Z , which
minimizes the overall static energy for all memory modules,
where Z is the set of all possible mappings. The objective
function is defined as:

argmin
X∈Z

∑
m∈M

∑
Ti∈IX

m

Pm,p
static · |Ti|+ Em,p

switch-penalty. (8)

Our approach to solve the optimization problems is discussed in
Section IV. During the minimization process, for each memory
macro m in every time interval Ti ∈ IX

m we determine the
optimal PM p ∈ P:

argmax
p∈P

(Pm,active
static − Pm,p

static) · |Ti| − Em,p
switch-penalty, (9)

that provides the lowest average energy. Since |P| is typically
very small, finding the optimal PM is generally fast.

C. PC-driven Power Management Controller

In order to realize the non-invasive power management, we
propose the following architecture for a PC-driven PMC, an
overview is shown in Fig. 2. The PMC is configured by the
target software itself, usually once at the beginning of the
software execution. The configuration is transmitted via an
APB interface, and contains a mapping from PC addresses to a
PM configuration for each memory module. Each configuration
consists of a power mode and a corresponding enable-bit for
each memory module. The enable-bit allows triggering power
mode transition on a subset of memory modules and facilitates
the generation of a power mode schedule. During program
execution, the PMC observes the PC from the processor core.
The PC is then marked as valid if no pipeline flush is detected.

Bank ConfigPC-Address
(mode0, en0),…0xdeadbeef

……

(mode0, en0),…0xcafebabe

PCvalid

PC
APB …

Sel.

=

=
Per-
Memory
Delay

Memory
Banks

Active
Config

Encode

LS
DS
SD

…

…

Fig. 2. PC-driven Power Management Controller

If the PC is valid and matches with an entry in the configured
PC table, the configuration will be applied to the memory power
control signals. In pipelined processor cores, it is not always
possible to change the state of a memory module into a sleep-
mode at the same time a PC match is registered. This is because
the current instruction in execution might access exactly this
memory module and can require multiple clock cycles before
the execution is actually finished. Our PMC solves this problem
is by a configurable delay register, which is only used for
transitions to sleep modes, but not for transitions to the active
mode. The length of the delay register can be easily adapted,
allowing the PMC to be used with different pipeline lengths.
As a consequence of this implementation, the PC can be routed
from an early pipeline stage.

IV. IMPLEMENTATION OF OPTIMIZATION FLOW

Our optimization flow consists of a preparation step 1) and
the optimization steps 2) and 3), as outlined in Fig. 3. The in-
puts are a software project, implemented in the C programming
language, and a definition of relevant hardware specifications.
This includes a description of the target’s memory configuration
and the number of available configuration entries on the PMC.

1) Generation of Time-stamped Memory Trace: The prepa-
ration for both optimization steps is to build the software project

3)2)

1)

Linker
Script

Mapping
Optimization

PMC
Config

Memory Sleep
Optimization

Build SW

SW Project HW Specs

Build SW

ISS:
Memory Trace

Fig. 3. Optimization Flow

from its source code, and link a target binary with a default
linker script, ignoring the memory bank split. The target binary
is then passed on to an Instruction Set Simulator (ISS), for
which we use ETISS [14]. Prior to the simulation with the ISS,
we determine Basic Block (BB) timings similar as in [15]. We
extended ETISS to simulate the timing behavior on BB-level,
along with the functional simulation. In addition to that, we
modified the ISS to output a time-stamped trace, containing all
executed instructions, including memory addresses of accessed
instructions and data.

2) Memory Mapping Optimization: In the first optimization
step, the time-stamped trace is analyzed for the potential sleep
intervals between memory accesses. All considered mappings
of code objects to the respective memory modules are then
evaluated with the potential energy savings of every sleep
mode in all potential sleep intervals, respecting the inflicted
switching penalties. The best mapping is found according to
the description in Section III-B. The optimized mapping is
then passed to a template-based linker script generator, that
locates all mapped function and data sections to the determined
memory modules.

3) Memory Sleep Schedule Optimization: We prepare the
second optimization step, by reconfiguring the software project
to use the newly generated linker script, and a second ISS-
simulation with a newly built target binary. To establish a sleep
schedule for the software project, we analyze the new ISS-trace.
The power-mode schedule is generated by iterating over the
memory trace and comparing the timestamps of instructions
to the access times of the memories’ sleep intervals. We
then schedule the power mode transitions according to the
maximized savings, as defined in Section III-A. The transitions
are associated with specific instruction addresses, to mark
the points during execution where transitions are triggered in
time. To realize non-invasive transitions between power modes
without introducing additional wait cycles, the transitions are
aligned with memory access instructions, and their execution
in the processor pipeline. Based on this schedule, we generate
a new header file containing the PMC configuration. We then
reconfigure the software project to include this configuration
header. Finally, we perform a build of the optimized software.

A. Efficient Mapping Optimization

As already stated in reference [13] an exhaustive search in all
parameter combinations of this optimization problem is infeasi-
ble in general, due to the exponential number of combinations
represented by |M||O|. That is, depending on the number of
code objects and memory modules, the number of possible
combinations quickly exceeds typical amounts of workstation
system memory and leads to excessive run times. Nevertheless,
a few key facts reduce the number of combinations to be
examined to a more realistic number, which is why we were
able to find mapping solutions for the benchmarks we used in
a short time. The number of memories is limited in practice,
due to the fact that smaller memories have a larger overhead
regarding area and power, in general. Additionally, common
MCUs have separate code and data memory banks to avoid
the von Neumann bottleneck, so we consider the respective

TABLE I
RELATIVE TIME SPENT IN POWER MODES FOR CODE MEMORY

Benchmark Mode
Code Memory Banks Sleep [%]

0 1 2 3

matmult
LS 0.00 0.00 0.00 0.00
SD 0.00 100.00 100.00 100.00

compress LS 0.00 0.00 0.00 0.00
SD 0.00 100.00 100.00 100.00

st
LS 0.00 0.00 0.00 0.00
SD 0.00 100.00 100.00 100.00

nbody
LS 0.00 0.00 0.00 0.00
SD 0.00 100.00 100.00 100.00

memory modules for code and data objects. Moreover, in some
cases, the size of a code object may exceed the capacity of
a single memory module, then multiple modules have to be
pooled to one virtual module, which reduces the number of
targeted memory modules further. If required, the number of
code objects to map can be reduced by bundling small data
objects into virtual symbols. This is because, in contrast to
large structures of linear data, these objects do not imply longer
periods of usage of the same memory module. To reduce the
number of mappings before evaluation, we remove impossible
mappings, due to the space limitations of each memory module.
We also eliminate equivalent mappings, which is particularly
beneficial in the case of equally sized memory modules.

V. EVALUATION

The optimization approach is validated through a prototype
of the PMC, that we have implemented at Register-transfer
Level (RTL) and integrated into the PULPissimo platform
[16]. We configured the platform to contain one four-stage
pipelined RISC-V core of the type CV32E40P, from which
we extract the PC of the ID-stage. A separate signal marks
the value of the PC as valid, if the ID-stage is not flushed
due to branch mispredictions. Our PMC is configured for two
delay cycles of transitions to sleep modes, so they can be
scheduled at the address of memory access instructions to
the respective memory module. For our design, we use the
22FDX FD-SOI technology from Globalfoundries as synthesis
target technology, with standard cells and low-leakage memory
macros from Synopsys. The PULPissimo platform uses three
memory banks, two equally sized private memory banks of
the processor core, and a shared memory bank that can be
used by peripheral platform components. The shared memory
bank is excluded in our analysis, as memory access patterns
of peripheral platform components are not part of this work.
The private memory banks are connected to the processor core
with separate interfaces, one for the instruction code and one
for data accesses. All code and data objects are loaded from a
read-only memory to the respective memory banks in a boot
stage, before execution. We split the private memory banks
into four equal-sized modules each, and examine two memory
configurations, shown in TABLE III.

TABLE II
RELATIVE TIME SPENT IN POWER MODES FOR DATA MEMORY

Benchmark Mode
Data Memory Banks Sleep [%]

0 1 2 3

matmult
LS 0.00 0.00 0.00 83.38
SD 0.00 0.00 0.00 0.00

compress LS 0.00 38.78 0.00 15.30
SD 0.00 0.00 100.00 0.00

st
LS 78.74 0.00 0.00 93.39
SD 0.00 100.00 100.00 0.00

nbody
LS 81.73 0.00 0.00 3.86
SD 0.00 100.00 100.00 0.00

A. Full system evaluation

We conducted experiments of the complete optimization flow
with benchmarks from the BEEBS Suite [17], compiled with
the riscv-gnu-toolchain in version 2.5.0, provided along with
the PULPissimo platform. We applied our optimization flow,
described in Section IV, on four benchmarks, representing
various applications. The resulting software contains a spe-
cific power-mode schedule for each memory module. For our
analysis, we choose the memory configuration depending on
the data memory usage of the benchmarks, and a memory
module can be in either of the three following power modes:
(1) Active, (2) Light Sleep (LS) or (3) Shut Down (SD). Our
tooling ensures that memory modules that are actually used
during the execution, are set to LS in the appropriate periods
between accesses. Memory modules that are not used, are set to
SD with the first applied PMC entry. Following the application
of our optimization flow, we simulated the execution of the
benchmarks on our MCU platform at the RTL to get exact
execution timings and to rule out accesses to sleeping memory
modules. The RTL simulation generates a record of all power
mode transitions, which is used to determine the cumulative
time spent in all available power modes and the number of
power mode transitions. The total static power dissipation and
savings are then derived using the memory model described in
Section III-A. TABLE III shows the memory configuration and
number of used PMC configuration entries for the executed
benchmarks, along with the resulting absolute and relative
energy savings compared to the baseline where all memory
modules are always active.

The code size of the executed benchmarks did not exceed
the size of one memory module, consequently all but one code
memories were shut down during the entire execution, as shown
in TABLE I. As a result, our subsequent analysis is focused on
the data memory. The relative time spent in each power mode
per data memory module is shown in TABLE II. Only matmult
allocates all available data memory modules, compress allocates
three, and st and nbody allocate two modules each. In order to
provide meaningful data for the evaluation of the effectiveness
of the PC-driven PMC, which enables the use of as many
light sleep intervals as possible, we show the relative energy
savings gained through the light sleeps on allocated memories
in TABLE IV. The allocated memory modules remain in light

TABLE III
SYSTEM SPECIFICATIONS, OPTIMIZATION FLOW RUNTIME AND ENERGY SAVINGS (BASED ON STATIC POWER)

Benchmark
Specs Flow Runtime [s] Energy [nJ] Energy Savings [%]

Memory PMC Entries Overall Mapping Baselinea LS Savings LS Sw. Penalty SD Savings Total LS SD

matmult 8 x 16KiB 11 12.22 0.26 296.1002 4.2121 0.6380 34.4489 12.84 1.21 11.63
compress 8 x 16KiB 14 15.46 0.81 297.4506 1.9554 1.2052 46.1413 15.76 0.25 15.51
st 8 x 64KiB 43 21.88 2.11 381.4798 26.8095 3.8827 130.4798 40.21 6.01 34.20
nbody 8 x 64KiB 31 62.29 3.99 3820.7744 140.2182 12.6441 1306.8426 37.54 3.34 34.20
aAll memory banks are always on

TABLE IV
ENERGY SAVINGS BY LS ON ALLOCATED DATA MEMORIES

Benchmark
Allocated Memories LS Savings

Baseline [nJ] Avg. LS [%] Abs. [nJ] Rel. [%]

matmult 148.0501 20.96 3.5741 2.41
compress 111.5440 13.52 0.7502 0.67
st 95.3700 86.07 22.9268 24.04
nbody 955.1936 42.80 127.5741 13.36

TABLE V
TOTAL ENERGY SAVINGS ON ALL MEMORIES
(BASED ON STATIC AND DYNAMIC POWER)

Benchmark
Relative Savings [%]

Gross Net
matmult 23.50 21.64
compress 26.13 24.32
st 8.81 6.40
nbody 8.73 7.00

sleep mode for approximately 18% to 86% of the execution
time. This results in an average reduction in static power
consumption in active modules of up to 24%.

We also conducted a gate-level simulation and power esti-
mation with the four benchmarks to compare the savings with
the energy demand of the PMC itself. For this purpose, we
synthesized two hardware designs, each with the same memory
configuration as shown in TABLE III. The design with the
smaller memory modules employs a PMC with 16 configuration
entries, while the other design utilizes a PMC with 128 entries.
Although the goal of optimization is to minimize static power,
it also affects dynamic power and its contribution to total
energy demand. Therefore, in addition to the results shown in
TABLE III and TABLE IV, we also included the effects of the
dynamic power. TABLE V shows the relative energy savings
of the two memory banks during execution. The first column
shows gross savings of up to 26%. The second column shows
the net savings, i.e., the gross savings minus the energy demand
of the PMC itself, with up to 24%.

B. PMC power evaluation

To determine how the average power consumption depends
on the number and size of the comparisons, we conducted
a comparative analysis of different hardware configurations.
We therefore simulated a sequence of programming all PMC

8 16 32 64 128
0

0.2
0.4
0.6
0.8
1

Number of Map Entries / PC comparisons

R
el

.A
vg

.P
ow

er PC 32 bit
PC 18 bit

Fig. 4. Comparison of the relative average power of the PMC module,
depending on the number of map entries and the PC bit width.

configuration entries, followed by a sequence of changing PC
values. The average power is determined with a gate-level
simulation of the standalone PMC module and a subsequent
power estimation. The plot in Fig. 4 shows the average power
of the PMC, relative to the power of the 32-Bit PMC with
128 entries, depending on the number of PMC configuration
entries for two input sizes of the PC. The bit width is a
consideration in this context, given that it affects the size of
the comparisons with the instruction addresses in the PMC.
The bit width results from the actual memory address range.
The configuration of 18 bit corresponds to four code memory
modules with 64KiB each. The results show a considerable
influence of the PMC size on the average power consumption
of the PMC and a less strong influence of the bit width of
the comparisons. Even though the results in TABLE V show
that the benefits of the current implementation of the PMC
already outweigh the energy overhead, it is clear that future
implementations could reduce the overhead even further.

VI. CONCLUSION

We presented an approach to provide an automated flow
for non-invasive and fine-grained power management in an
MCU environment. This was achieved by developing a method
to efficiently search for an optimized mapping of software
code objects to individual modules of split memory banks, in
conjunction with a hardware solution for autonomous power
management. The results of our evaluation show that the
proposed PC-driven PMC has the potential to fully exploit
the benefits of using sleep modes when applicable. We have
also shown that our approach provides energy savings of up to
24%, sufficient to justify its use. For future work, we consider
the usage of execution contexts for power mode selection, and
improving the energy-efficiency of the PMC hardware module.

REFERENCES

[1] RP2040 Datasheet, Raspberry Pi Ltd, May 2024.
[2] RP2350 Datasheet, Raspberry Pi Ltd, Aug. 2024.
[3] C. Fu, G. Calinescu, K. Wang, M. Li, and C. J. Xue, “Energy-Aware

Real-Time Task Scheduling on Local/Shared Memory Systems,” in 2016
IEEE Real-Time Systems Symposium (RTSS). Porto, Portugal: IEEE,
Nov. 2016, pp. 269–278.

[4] A. Janapsatya, A. Ignjatovic, and S. Parameswaran, “A Novel Instruction
Scratchpad Memory Optimization Method based on Concomitance Met-
ric,” in Proceedings of the 2006 Asia and South Pacific Design Automation
Conference, 2006, p. 6.

[5] V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad memory
optimization and task scheduling for MPSoC architectures,” in Proceed-
ings of the 2006 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems - CASES ’06. Seoul, Korea: ACM
Press, 2006, p. 401.

[6] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation for
scratch-pad memory using compile-time decisions,” ACM Transactions on
Embedded Computing Systems, vol. 5, no. 2, pp. 472–511, May 2006.

[7] Y. Li, J. Zhan, W. Jiang, and J. Yu, “Energy optimization of branch-
aware data variable allocation on hybrid SRAM+NVM SPM for CPS,” in
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.
Limassol Cyprus: ACM, Apr. 2019, pp. 236–241.

[8] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Data
Allocation Optimization for Hybrid Scratch Pad Memory With SRAM
and Nonvolatile Memory,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 21, no. 6, pp. 1094–1102, Jun. 2013.

[9] J. Pallister, K. Eder, and S. J. Hollis, “Optimizing the flash-RAM Energy
Trade-off in Deeply Embedded Systems,” in Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO ’15. Washington, DC, USA: IEEE Computer
Society, 2015, pp. 115–124.

[10] Ozturk, Ozcan and M. Kandemir, “ILP-Based energy minimization tech-
niques for banked memories,” ACM Transactions on Design Automation
of Electronic Systems, vol. 13, no. 3, pp. 1–40, Jul. 2008.

[11] L. Steinfeld, M. Ritt, F. Silveira, and L. Carro, “Low-Power Processors
Require Effective Memory Partitioning,” in Embedded Systems: Design,
Analysis and Verification, G. Schirner, M. Götz, A. Rettberg, M. C.
Zanella, and F. J. Rammig, Eds. Berlin, Heidelberg: Springer, 2013,
pp. 73–81.

[12] M. Strobel, M. Eggenberger, and M. Radetzki, “Low power memory
allocation and mapping for area-constrained systems-on-chips,” EURASIP
Journal on Embedded Systems, vol. 2017, no. 1, Jul. 2016.

[13] M. Strobel and M. Radetzki, “Power-mode-aware Memory Subsystem
Optimization for Low-power System-on-Chip Design,” ACM Transac-
tions on Embedded Computing Systems, vol. 18, no. 5, pp. 1–25, Oct.
2019.

[14] D. Mueller-Gritschneder, K. Devarajegowda, M. Dittrich, W. Ecker,
M. Greim, and U. Schlichtmann, “The extendable translating instruction
set simulator (ETISS) interlinked with an MDA framework for fast
RISC prototyping,” in Proceedings of the 28th International Symposium
on Rapid System Prototyping Shortening the Path from Specification to
Prototype - RSP ’17. Seoul, South Korea: ACM Press, 2017, pp. 79–84.

[15] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Fast and accurate
source-level simulation of software timing considering complex code
optimizations,” in Proceedings of the 48th Design Automation Conference
on - DAC ’11. San Diego, California: ACM Press, 2011, p. 486.

[16] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and
L. Benini, “Quentin: An ultra-low-power pulpissimo SoC in 22nm FDX,”
in 2018 IEEE SOI-3D-subthreshold Microelectronics Technology Unified
Conference (S3S), 2018, pp. 1–3.

[17] J. Pallister, S. Hollis, and J. Bennett, “Beebs: Open benchmarks
for energy measurements on embedded platforms,” 2013. [Online].
Available: https://arxiv.org/abs/1308.5174

https://arxiv.org/abs/1308.5174

	Introduction
	Related work
	Considerations and General Approach
	Memory Power management
	Mapping optimization
	PC-driven Power Management Controller

	Implementation of Optimization Flow
	Generation of Time-stamped Memory Trace
	Memory Mapping Optimization
	Memory Sleep Schedule Optimization

	Efficient Mapping Optimization

	Evaluation
	Full system evaluation
	PMC power evaluation

	Conclusion
	References

