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Tübingen, Germany

Abstract—LiDAR-based perception systems have become
widely adopted in autonomous vehicles. However, their perfor-
mance can be severely degraded in adverse weather conditions,
such as rain, snow or fog. To address this challenge, we propose a
method for improving the robustness of LiDAR-based perception
in adverse weather, using data augmentation techniques on point
clouds. We use novel as well as established data augmentation
techniques, such as realistic weather simulations, to provide a
wide variety of training data for LiDAR-based object detectors.
The performance of the state-of-the-art detector Voxel R-CNN
using the proposed augmentation techniques is evaluated on a
data set of real-world point clouds collected in adverse weather
conditions. The achieved improvements in average precision (AP)
are 4.00 p.p. in fog, 3.35 p.p. in snow, and 4.87 p.p. in rain at
moderate difficulty. Our results suggest that data augmentations
on point clouds are an effective way to improve the robustness
of LiDAR-based object detection in adverse weather.

I. INTRODUCTION

Since autonomous vehicles (AVs) promise to make future
mobility more comfortable and efficient, autonomous driving
is of tremendous interest to both society and current research.
Additionally, a major benefit of autonomous driving is an
increase in traffic safety. As presented by the European Union,
90% of accidents are due to human error including factors
such as alcohol, drugs or distraction [1]. Therefore, utilizing
AVs to replace human drivers could reduce the number of
accidents.

An AV must be able to perceive its surroundings completely
and comprehensively at all times in order to genuinely achieve
the safety enhancement. Therefore, the sensors and algorithms
must be able to handle a wide range of external influences
or disturbances. The ISO26262 recommends a testing scope
for AVs of 109 km to verify the sensors and algorithms.
However, even with such extensive testing, not all scenarios are
necessarily covered and cannot be taken into account for neural
network-based object detection training and verification. Since
the robustness of large networks cannot be formally veri-
fied [2], the robustness verification must be carried out using
a testing procedure with as much input as possible regarding
scenarios, environmental influences, and potential corruptions
due to sensor degradation and failures. In order to improve

the robustness of object detection a retraining of object de-
tectors on an extended data set containing the aforementioned
influences can be performed [3]. Therefore, we propose a set
of data augmentation techniques integrated in an optimization
flow operating on LiDAR point clouds. This method creates
a comprehensive and manifold data set to train state-of-the-
art object detectors and increase their robustness. Numerous
augmentation techniques, including geometric modifications
such as scaling or transformations, intensity shifts, and aug-
mentations through a physically realistic weather simulation,
are considered and evaluated.

An overview of our approach is given in Figure 1. The ob-
ject detector is embedded in an optimization loop and trained
using a set of augmentation techniques on clear weather
recordings. Then the detector is evaluated on recordings of
real fog, snow, and rain. To optimize the augmentation pa-
rameters the Optuna hyperparameter optimization framework
[4] is used. In Section II, we investigate current state-of-the-
art research related to our proposed methods. The proposed
LiDAR point cloud augmentation strategies are presented in
Section III. Afterwards, we explain our conducted experiments
in Section IV and the corresponding results in Section V.
Finally, in Section VI we conclude our work and give an
outlook to further research topics.

II. RELATED WORK

Hahner et al. [5] evaluated the impact of different data
augmentations on the detection performance of an object
detector on the KITTI data set [6]. For this, they trained
the object detector PointPillars [7] with different augmen-
tation techniques separately as well as combinations of the
augmentations which achieved the best results. They showed,
that point cloud augmentations can significantly improve the
detection performance of a neural network object detector.
However, they only evaluated a small set of fixed parameters
for each augmentation, but we showed that the achieved results
for each augmentation heavily depends on the selected param-
eters. Recently they extended their study by training multiple
state-of-the-art detectors with the augmentation policies, that
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Fig. 1: Overview of the proposed optimization flow. The object
detector is trained on clear weather recordings using different
augmentation techniques (Section III). Then the detector is
evaluated on fog, snow, and rain recordings (Section IV). To
optimize the augmentation parameters the Optuna hyperpa-
rameter optimization framework [4] was used (Section IV).

achieved the best results for PointPillars. The other detectors
showed similar performance increase like PointPillars. They
also evaluated these augmentation policies on the STF data
set [8], but focused only on the clear weather recordings. In
different works Hahner et al. used a fog simulation [9] and
a snow simulation [10] to augment point clouds to improve
the detection performance in adverse weather. They trained
multiple detectors on the STF clear weather data set and
used the STF fog and snow data sets for evaluation. For both
snow and fog they could show an improved performance when
augmenting the point clouds with fog and snow respectively.
However, they did not evaluate the influence of other common
augmentation techniques separately and instead trained the
detectors using the OpenPCDet [11] default augmentations
for KITTI together with their simulations, so the influence of
each individual augmentation on the detection performance is
unknown. Rivero et al. [12] augmented point clouds in adverse
weather by placing objects in the spray region of vehicles.
The points caused by spray droplets behind driving vehicles
caused false positive detections which triggered the emergency
braking of the vehicle. To train a detector to not detect false
positives in the spray region, they actually placed objects in
this region, so that the detector learns to discriminate between
spray points and actual object points.

III. POINT CLOUD DATA AUGMENTATIONS

This section describes the augmentation strategies which are
evaluated in this work. Besides well established geometric data
augmentation techniques, which are widely used on data sets
recorded in good weather conditions, we also evaluate novel
data augmentations that specifically add effects that can occur
in adverse weather. Furthermore, we use weather simulations
to directly augment the training data with expected input
variations caused by the corresponding weather condition.

Weather Effects

Noise Augmentation: The noise augmentation mimics the
occurrence of false points in adverse weather caused by
backscattering. Therefore, noise is added to the point cloud
in the form of additional points. The point positions x, y
and z are sampled independently from a uniform distribution
within the specified detection ranges. Moreover, each added
point requires an intensity value i, for which we evaluate
four different selection strategies. The intensity is either set
to the minimum or the maximum value, or the intensity is
sampled from a uniform distribution within the minimum
and maximum values. The fourth strategy is the salt and
pepper variant, where one half of the points gets the minimum
intensity and the other half gets the maximum intensity. The
number of points n added to the point cloud is sampled from
a normal distribution N (0, σ2) with n ≥ 0.

Drop Out: The drop out augmentation mimics the point
loss which occurs in adverse weather due to absorption and
scattering, therefore points from the point cloud are randomly
deleted. The fraction of points f which are deleted is sampled
from a normal distribution N (0, σ2) with f ∈ [0, 1], where
f = 0 means that no point is deleted and f = 1 means that
all points are deleted.

Intensity Shift: The intensity shift augmentation shifts ev-
ery points intensity by the same amount such that a point
P (x, y, z, i) becomes P ′(x, y, z, i+∆i), where ∆i is sampled
from a normal distribution N (0, σ2). If the intensity exceeds
the minimum or maximum intensity, it is set to the minimum
or maximum respectively. This augmentation imitates the
intensity alterations caused by changes in the environment or
sensor settings.

Geometric Transformations

Random Translation: The random translation augmentation
translates every point by the same amount in a random
direction, such that a point P (x, y, z, i) becomes P ′(x +
∆x, y + ∆y, z + ∆z, i), where ∆x, ∆y and ∆z are sam-
pled independently from a normal distribution N (0, σ2). The
bounding box labels need to be translated by the same amount,
such that a bounding box BB(x, y, z, w, l, h,Θ) becomes
BB′(x+∆x, y +∆y, z +∆z, w, l, h,Θ).

Random Scaling: The random scaling augmentation scales
every point by the same factor s, such that a point P (x, y, z, i)
becomes P ′(x · s, y · s, z · s, i), where s is sampled from a
normal distribution N (1, σ2). The bounding box labels need
to be scaled by the same factor, such that a bounding box
BB(x, y, z, w, l, h,Θ) becomes BB′(x · s, y · s, z · s, w · s, l ·
s, h · s,Θ).

Local Scaling: Unlike the other augmentations which are
applied to the whole point cloud, this augmentation applies
only to the points inside bounding boxes. Each point in a
bounding box together with the bounding itself is scaled as in
the random scaling augmentation.

Random Flip: The random flip augmentation flips every
point at the x-axis with a certain probability p, such that
a point P (x, y, z, i) becomes P ′(x,−y, z, i). The bounding



TABLE I: Combined augmentation policies

Policy Augmentations

1

Noise Salt-Pepper
Drop Out
Random Translation
Random Scaling

2
Fog Chamfer
Random Translation
Random Scaling

3
Rain
Random Translation
Random Scaling

4
Snow
Random Translation
Random Scaling

box labels need to be flipped as well and the orientation
of the box needs to be adjusted, such that a bounding box
BB(x, y, z, w, l, h,Θ) becomes BB′(x,−y, z, w, l, h, (Θ+π)
mod 2π).

Filter Labels: This augmentation deletes all bounding box
labels which contain less points than a certain threshold t. The
point cloud remains unchanged.

Weather Simulation

Fog Augmentation: This augmentation applies the proba-
bilistic fog simulation, which was developed in a previous
work [13]. This fog simulation uses probabilistic calculations
to determine individual point modification to match the char-
acteristics of fog influence on the point clouds. The intensity
of the fog simulation depends on the selected visibility dis-
tance v and the selected parametrization as described in [13].
The visibility distance is sampled from a normal distribution
N (µ, σ2) with v ∈ [0, µ]. Then the fog simulation is applied
to the point cloud with probability p.

Rain Augmentation: Similar to the fog augmentation, this
augmentation strategy applies the rain simulation from [13].
This rain simulation is based on raytracing on a generated rain
volume. For each point in the point cloud multiple diverging
rays are traced in a circular pattern to approximate the beam
divergence of the laser beam. The point cloud is then modified
based on different intersection ratios. A point is selected for
modification, if its total intersection ratio is larger than a
certain threshold Tall. Then this point is moved to towards
the sensor if the intersection ration of a single rain drop
is larger than the threshold Tmost, otherwise this point is
deleted. The intensity of this augmentation is adjusted by the
precipitation rate r and the number of drops per unit volume
n. The precipitation rate is sampled from a normal distribution
N (0, σ2

r) with r ∈ [0, 20]. The number of drops per unit
volume is also sampled from a normal distribution N (0, σ2

n)

TABLE II: Parameter search results for each augmentation.

Augmentation Parameters Best Values

Noise Uniform σ2 9977.06

Noise Minimum σ2 9940.64

Noise Maximum σ2 9440.40

Noise Salt-Pepper σ2 9325.73

Drop Out σ2 0.29

Intensity Shift σ2 33.74

Random Translation σ2 2.04

Random Scaling σ2 0.04

Local Scaling σ2 1.92

Random Flip p 0.19

Filter Labels t 14

Fog Chamfer σ2, p 11.80, 0.80
Fog Distance σ2, p 92.07, 0.99
Fog Mean σ2, µ 64.37, 153.18
Rain σ2

r , σ2
n,

p
6.28, 97.40,
0.86

Snow σ2
r , σ2

n,
p, s

9.29, 150.50,
0.85, 9.85

with n ∈ [0, 1200]. The rain simulation is then applied with
probability p to the point cloud.

Snow Augmentation: The snow augmentation applies the
snow simulation from [13]. This snow simulation uses the
same raytracing approach as the rain simulation to alter the
point cloud but with a different volume generation. Since the
size of the snowflakes depends on the simulated snow type
this simulation has an additional scaling parameter s which
scales the snowflakes from their molten diameter to their real
diameter as described in [13]. The other parameters are the
same as the parameters from the rain augmentation but with
r ∈ [0, 10]. Like for the other weather augmentations, the snow
simulation is then applied to the point cloud with probability
p.

IV. EXPERIMENTS

Data Set

For evaluation the STF data set [8] was used, as it features
recordings in clear weather conditions as well as in rain, snow
and fog. Each frame in the STF data set is labeled with the
weather condition it was recorded in. These labels are: clear,
rain, light fog, dense fog and snow. In total there are 6306
frames in clear conditions, 4588 in snow, 1045 and 875 in
light and dense fog respectively and 118 frames in rain. For
training and validation a random 50/50 split of the recordings
in clear weather was used. For testing the recordings in rain,
light fog, dense fog and snow are used separately.
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Fig. 2: Parameter search results for the translation and the scaling augmentation on the light fog data set. The points show the
highest achieved average precision (AP) for independent training runs.

3D Object Detection

As object detector the state-of-the-art detector Voxel R-
CNN [14] was used. For the evaluation we used the 3D object
detection metrics from the KITTI data set [6]. For the reported
average precision values the 40 recall points interpolation
was used. For a detection to be counted as true positive the
Intersection over Union (IoU) needs to be at least 0.7. Like in
the KITTI 3D object detection evaluation, we report our results
for the three difficulty levels easy, moderate and hard, which
are based on the bounding box height, the occlusion and the
truncation of objects.

Training

For training the HANNAH framework [15] was used with
the implementation of the object detector from OpenPCDet
[11]. The object detector was trained solely on the clear
weather training set with one augmentation at a time. For
each augmentation a hyper parameter search using the Optuna
framework [4] was conducted. The model and training hyper
parameter were kept the same for all training runs and only
the augmentation parameter mentioned in Section III were
optimized. For each training run the detector was trained for
80 epochs. Additionally, to the single augmentation evaluation
we trained the detector with combinations of different aug-
mentations. The combined augmentation policies are shown
in Table I. As parameters we used the best parameter from
the single augmentation evaluation. Moreover, we trained the
detector using the Voxel R-CNN standard augmentation policy
from [11].

Fixed Parameters

For the fog simulation there are two sets of fixed parameters
which were obtained from two optimizations using different
metrics as explained in [13]. The first parameter set is from
the optimization of the fog simulation using the chamfer

distance to compare the simulated foggy point clouds to real
point clouds in fog. For the other parameter set the point
density by distance was used to compare the simulated to
the real point clouds. In the following we call these fog
simulation variants fog chamfer and fog distance. The mean
µ of the normal distribution from which the visibility distance
is sampled was set to 200m. For the fog distance variant also
a hyper parameter search was conducted including µ with a
fixed probability of p = 1. This variant is called fog mean.

For the rain and snow simulation, other than in [13] the
parameters, that determine the generated ray pattern for the
beam divergence approximation are chosen to be Nr = 2 and
Nc = 5, for performance reasons, which results in a total
of 11 rays to be traced per point in the point cloud. The
intersection thresholds, which determine if a point is deleted,
moved or remains unchanged, depending on the intersection
ratios on the rain/snow volume, are chosen to be Tall = 0.15
and Tmost = 0.8 for both the rain and snow simulation. A
detailed description of all the weather simulation parameters
is given in [13].

Since in the STF data set the intensities are not normalized
and the sensor output for the intensity is one byte, the
minimum intensity in the STF data set is 0 and the maximum
intensity is 255. These minimum and maximum intensity
values were also used as minimum and maximum for the
intensity shift. For the other evaluated augmentations there
were no fixed parameter choices.

V. RESULTS

Parameter Search

The parameter search results are shown in Table II for each
augmentation strategy. The given best values are the parameter
values which were used in the training run that achieved the
best results on the light fog data set or in case of the weather
augmentations on the corresponding weather data set. As an



TABLE III: Results of the data augmentation evaluation on the STF data set. Average precision for the Car class for each
augmentation and weather condition, the best results for each augmentation category are underlined and the over all best results
are highlighted in bold.

AP Car 3D [%]

Clear Light Fog Dense Fog Snow Rain

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Baseline 29.78 22.74 19.14 25.53 20.50 18.42 13.04 11.37 9.92 26.66 19.97 16.95 25.61 17.67 14.37

Voxel R-CNN Policy 41.23 32.32 28.01 33.59 27.49 25.64 19.69 16.89 14.92 36.24 28.26 24.36 33.72 23.93 20.31

Noise Uniform 28.10 21.25 18.09 23.75 19.21 16.74 8.41 7.37 6.36 24.80 18.79 15.83 27.04 18.34 15.05

Noise Minimum 29.20 22.72 19.50 25.29 19.82 18.34 10.28 9.17 8.06 26.44 20.24 17.14 29.02 18.93 16.25

w
ea

th
er

ef
fe

ct
s

Noise Maximum 29.92 22.47 19.06 23.57 19.07 17.55 10.49 8.76 7.39 25.49 19.18 16.02 28.99 19.73 16.80

Noise Salt-Pepper 29.90 22.18 18.76 24.57 19.67 17.94 10.32 8.60 7.80 25.73 18.86 15.75 22.51 14.52 13.09

Drop Out 36.92 28.65 24.72 32.26 26.12 24.22 16.30 13.71 11.85 34.80 26.33 22.77 30.64 19.97 17.75

Intensity Shift 30.03 23.11 19.62 25.14 20.47 18.83 11.69 10.12 8.90 27.65 20.89 17.69 25.96 16.53 13.79

Random Translation 44.21 34.34 29.29 38.82 30.85 28.91 20.31 17.57 15.70 41.00 31.61 27.80 41.69 28.80 25.29

Random Scaling 40.38 31.23 26.52 36.62 28.93 26.46 18.38 15.46 13.24 36.53 27.60 23.83 36.19 25.07 21.83

ge
om

et
ri

c

Local Scaling 30.44 22.74 18.92 24.63 20.22 17.36 10.65 9.54 8.16 24.14 18.18 15.76 22.33 14.53 12.07

Random Flip 30.19 23.74 20.62 24.28 20.49 18.35 14.14 11.61 10.79 26.25 20.30 17.43 23.29 16.37 14.59

Filter Labels 28.63 21.93 17.46 23.13 18.98 17.11 13.35 11.77 10.43 25.56 19.37 16.10 25.88 16.92 14.34

Fog Chamfer 41.15 32.13 28.19 36.41 29.51 27.56 24.33 20.89 17.96 38.41 29.43 25.82 38.73 26.84 23.67

w
ea

th
er

si
m

ul
at

io
ns

Fog Distance 39.90 31.24 27.44 35.31 28.38 26.64 21.74 18.71 16.64 37.95 29.18 25.41 36.10 24.54 23.35

Fog Mean 39.56 31.11 27.24 35.78 29.03 27.25 23.60 20.30 17.41 38.06 29.36 25.65 39.99 27.12 25.51

Rain 32.74 24.28 20.52 25.63 20.55 18.93 10.63 9.44 8.10 27.92 21.18 17.76 22.72 14.56 12.58

Snow 36.74 28.58 23.93 30.65 25.13 22.75 18.86 16.24 14.60 34.88 26.59 22.95 37.23 25.81 22.38

Policy 1 42.89 32.60 28.54 36.99 29.97 28.06 21.77 18.44 15.96 39.64 30.33 26.33 35.33 24.87 22.22

co
m

bi
na

tio
ns

Policy 2 41.24 32.06 26.94 36.52 29.70 27.91 21.85 18.91 16.32 36.81 28.98 25.26 36.78 25.41 22.16

Policy 3 44.21 33.37 29.01 37.22 30.18 28.28 20.49 17.52 15.60 40.56 30.53 26.45 37.01 25.11 22.56

Policy 4 42.14 32.62 28.40 36.23 29.48 27.52 22.90 19.64 17.50 39.71 30.34 26.19 38.03 25.87 22.91

example detailed results from the parameter search are given
in Figure 2 for the translation and scaling augmentation. Both
parameter search results show how important it is to choose
the right parameters for augmentation. While it is sufficient to
choose a sufficiently large value for σ2, to achieve good results
in the random translation augmentation, σ2 must lie within a
relatively small interval to achieve good results for the random
scaling augmentation. This shows that even a small change
in parameter values can have a large impact on the obtained
results and for an expressive comparison of augmentation
strategies an extensive parameter search is necessary.

Detection Performance

Table III shows the results of the data augmentation eval-
uation for each augmentation under all weather conditions.
From the weather effect augmentations only the drop out
augmentation could gain a significant improvement com-
pared to the baseline. The achieved increase in AP was
5.91 percentage points p.p., 5.62 p.p., 2.34 p.p., 6.36 p.p.,
and 2.30 p.p. for clear, light fog, dense fog, snow, and rain
respectively at the moderate difficulty level. The noise aug-
mentation variants and the intensity shift augmentation instead
behaved poorly and could not improve the detection perfor-
mance compared to the baseline, the noise augmentations even
caused a significant decrease in AP in some conditions.

For the geometric augmentations the random translation
achieved the best results on all data sets with an AP increase of

11.60 p.p., 10.35 p.p., 6.20 p.p., 11.64 p.p., and 11.13 p.p. for
clear, light fog, dense fog, snow, and rain respectively at mod-
erate difficulty. Moreover the random scaling augmentation
also significantly improved the detection performance under
all conditions but with somewhat lower results than the random
translation augmentation. The other geometric augmentations
could only marginally improve the baseline or even reduced
the detection performance for some conditions.

Of the weather simulations the fog chamfer augmentation
outperformed the other weather simulations on the clear, light
fog, dense fog, and snow data set with an increased AP
compared to the baseline by over 9 p.p. on all data sets
at moderate difficulty. Only on the fog mean augmentation
could achieved better results on the rain data set than the fog
chamfer augmentation. The fog mean augmentation improved
the baseline in rain by 14.38 p.p., 9.45 p.p., and 11.14 p.p. for
the easy, moderate and hard difficulty respectively. The fog
distance augmentation achieved similar results like the other
fog augmentation variants with a marginally lower detection
performance. The snow augmentation could also significantly
improve the baseline in all conditions. However, the snow aug-
mentation is outperformed by the fog augmentation variants on
all data sets except the rain data set where it outperformed the
fog distance variant at easy and moderate difficulty, but still
lacks behind the fog mean and fog chamfer augmentation. The
rain simulation performed poorly and could only achieve slight
improvements in some conditions or reduced the detection



performance.
The combined augmentation policies all performed well on

all data sets and reached high performance improvements,
however none of the combined policies could improve the
single augmentations. The best combined policy was policy
3, which achieved the same result as the random translation
in clear weather at easy difficulty. On the other data sets and
difficulty levels the results of policy 3 are only marginally
lower than the random translation augmentation. Policy 4
showed similar results as policy 3 but outperformed policy
3 on the dense fog and rain data set.

As shown beforehand there are augmentations in each cat-
egory that can significantly improve the baseline without aug-
mentations. However, when training a neural network object
detector, there is always a form of data augmentation applied.
To show the real improvement of our proposed methods we
now compare the best augmentations from each category to
the standard augmentation policy from Voxel R-CNN.

In clear weather and light fog the over all best performing
augmentation was the random translation with an increase in
AP of 2.02 p.p. in clear weather and 3.36 p.p. in fog compared
to the Voxel R-CNN policy at moderate difficulty. In dense
fog the fog simulation augmentation was clearly the best
performing augmentation with an improvement of 4.00 p.p.
compared to the Voxel R-CNN policy at moderate difficulty.
On the snow data set the best performing augmentation
was again the random translation with an increased AP by
3.35 p.p. in comparison with the Voxel R-CNN policy at the
moderate difficulty level. Also for the rain data set the largest
improvement could be achieved using the random translation
augmentation with an increase by 4.87 p.p. compared to the
Voxel R-CNN policy at moderate difficulty. However, for the
hard difficulty level the fog mean augmentation outperformed
the random translation with an AP increase of 5.20 p.p.
compared to the Voxel R-CNN policy.

VI. CONCLUSION & FUTURE WORK

In this work we improved the detection performance of
a state-of-the-art object detector in clear weather as well
as in adverse weather conditions using data augmentation
techniques for LiDAR point clouds. For this we trained the
detector Voxel R-CNN on the STF data set with recordings in
clear weather and extended it using augmentations. The trained
detector was tested on recordings in clear weather, fog, snow
and rain. We evaluated both common and novel augmentation
techniques, for each augmentation we conducted an extensive
parameter search in order to get an expressive comparison
of the different augmentations. Our parameter search results
showed, that even small changes of the augmentation param-
eter can have a huge impact on the detection performance.
Furthermore, we showed, that data augmentations can dras-
tically improve the detection performance under all weather
conditions. Moreover, we could improve the Voxel R-CNN
augmentation policy significantly with an improvement in AP
of 4.00 p.p. in fog, 3.35 p.p. in snow, and 4.87 p.p. in rain at
moderate difficulty

For future research this evaluation will be extended to
more augmentations and object detectors as well as other data
sets. Furthermore, the fixed parametrization of the weather
simulations will be included into the parameter search and the
influence of different sampling strategies of the augmentation
parameters will be investigated.
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and O. Bringmann, “Hardware accelerator and neural network co-
optimization for ultra-low-power audio processing devices,” arXiv
preprint arXiv:2209.03807, 2022.


