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Abstract—Comprehensive environment perception is essential
for autonomous vehicles to operate safely. It is crucial to detect
both dynamic road users and static objects like traffic signs or
lanes as these are required for safe motion planning. However,
in many circumstances a complete perception of other objects or
lanes is not achievable due to limited sensor ranges, occlusions,
and curves. In scenarios where an accurate localization is
not possible or for roads where no HD maps are available,
an autonomous vehicle must rely solely on its perceived road
information. Thus, extending local sensing capabilities through
collective perception using vehicle-to-vehicle communication is
a promising strategy that has not yet been explored for lane
detection. Therefore, we propose a real-time capable approach
for collective perception of lanes using a spline-based estimation
of undetected road sections. We evaluate our proposed fusion
algorithm in various situations and road types. We were able to
achieve real-time capability and extend the perception range by
up to 200%.

Index Terms—Lane Detection, Collective Perception, Au-
tonomous Driving, Data Fusion

I. INTRODUCTION

In the European Union, 90% of traffic accidents with
fatalities can be attributed to human error [1]. As a result,
research and industry have become increasingly interested in
autonomous driving because it has the potential to improve
traffic flow and increase road safety. Autonomous vehicles
must overcome various challenges in order to make this
contribution, such as having a proper and full perception of
their surroundings and having accurate trajectory planning.

The vehicle-local perception is limited by sensing ranges
or occlusion through e.g. buildings and moreover affected by
environmental influences like rain [2]. A promising solution
to deal with these challenges is collective perception (CP). In
CP multiple vehicles perceive their surroundings and transmit
information about their state and detected objects via vehicle-
to-vehicle (V2V) or vehicle-to-everything (V2X) communi-
cation to extend the local perception of an ego vehicle to a
more complete environment. CP increases sensor ranges and
enhances perception quality as shown by Volk et al. [3], [4].
Besides the perception of other road users, the perception of
lanes is crucial to perform the motion planning without HD
maps, which are often not available. The lane detection is
affected by environmental influences and occlusion in the same
way as the object detection. Increased safety, improved traffic
flow, and decreased fuel consumption can all be attributed to

extended lane understanding and a resulting extended trajec-
tory planning. However, to the best of our knowledge, the
concept of CP has not been applied to lane detection.

The goal of this work is the investigation and development
of a collective lane detection (CoLD) system for convoy
driving (short distance) and regular driving with medium
distances between vehicles. In Sec. II, we present an extract
of works with reference to our collective lane detection. A
detailed overview of our spline-based approach, including
our proposed apex estimation for an improved interpolation
is presented in Sec. III. Then, we show the results of our
proposed method based on three different scenarios in terms
of real-time performance and perceptual accuracy in Sec. IV.
Finally, in Sec. V we conclude our work and show an outlook
to further research.

II. RELATED WORK

Different representations and frameworks, to work with
lanes and maps already exist. Basically, lanes can be described
through mathematical primitives such as lines, arcs, clothoids,
and polynomial functions [5]. Moreover, piecewise polynomial
functions, so called splines, are suitable to describe lanes as
shown in the works of Wang et al. [6] and Zhao et al. [7].
Towards polynomial functions a spline avoids the phenomenon
of Runge [8] which generates oscillations while interpolating
points.

A comprehensive map format using mathematical primitives
is the OpenDrive format by Dupuis et al. [5]. OpenDrive
provides information about the centerline of road sections
based on the above mentioned primitives. Lanes are provided
in relation to the centerline. The format allows the integration
of various additional information such as road surface, speed
limits or infrastructural elements like traffic signals. A well
known but complex format is the Open Street Map (OSM)
description by Haklay and Weber [9]. The open project collects
geo data with millions of registered users and provides maps
free to use. A more simple framework to describe lanes and
road networks is the Lanelet framework by Bender et al. [10]
with the improvements in Lanelet2 by Poggenhans et al. [11].
The framework provides a XML-based description of maps
by single lanes which consists of two point lists for left
and right lane boundary. Furthermore, Lanelet2 comes along
with different modules to incorporate traffic rules, constructing



trajectories based on the given road network topology or
modules to match coordinates to lanelets. The CommonRoad
project [12] is a benchmark framework for motion planning
which provides different tools to verify motion planning
and to convert maps between different map formats like the
OpenDrive2Lanelet converter [13].

Vehicle-local lane detection is investigated by many re-
searchers. Early works such as Wang et al. [6] or Aly [14] used
image-based edge detection algorithms combined with the
hough transformation to detect lane markings. Based on actual
benchmarks like CULane [15], it can be observed that the
best results are mostly achieved by neural network-based lane
detectors. Zou et al. [16] used a combination of convolutional
and recurrent neural networks to achieve a precision of about
98%. Considering the review of deep neural network lane
detectors by Mamun et al. [17] various algorithms are capable
of achieving precision and accuracy scores of 95% to 97%.

Due to limited sensing capability or occlusions, local per-
ception may not always satisfy sensing range requirements. A
promising approach to solve this is the collective perception.
A short overview of the CP process adapted to our CoLD
system is shown in Fig. 1.

A) Local Perception B) V2X Communication

D) Collective Perception C) Fusion 

Fig. 1: Overview of the collective perception pipeline for
CoLD. A) describes a given scenario with local perception, in
B) the perceived lanes are transmitted via V2V/V2X commu-
nication. C) shows the fusion after a validation and D) the final
collectively perceived lane (green). Image adapted from [3].

An early work for CP of road users was presented by
Rauch et al. [18]. They proposed methods for data fusion and
data maintenance in a Car2X-based object perception system.
The perception advantage of CP towards local perception
under adverse weather was investigated by Volk et al. [3].
They show that CP still achieves an average precision of
about 24%, while the local perception was not capable to
perceive any object due to dense fog. Furthermore, Schiegg
et al. [19] investigated the performance of the collective
perception service with cellular V2X. For the information

(a)

(b)

Fig. 2: Possible fusion types to distinguish in our CoLD. (a)
shows the convoy scenario (referred to as convoy fusion) with
a cooperative vehicle (blue) inside of the locally detected lane
by the ego vehicle (red). (b) shows the regular driving scenario
(referred to as spline fusion) with a detection gap between the
local detections of ego and cooperative vehicle.

exchange the European Telecommunications Standards Insti-
tute (ETSI) proposed message formats as well as generation
rules. The two defined message formats are the Cooperative
Awareness Message (CAM) [20], containing information about
the ego vehicle and the Collective Perception Message (CPM)
containing information about the ego state as well as the states
of the perceived objects. These messages can be seen as work-
in-progress standard. The message generation rules have been
revised by Delooz et al. [21] and Thandavarayan et al. [22].

III. COLLECTIVE LANE DETECTION

As presented in Sec. II, different approaches for vehicle-
local lane detection and collective perception of objects exist;
we aim to combine both. Therefore, in this section we will
propose an approach for the collective lane detection in (a) a
convoy which is comparable to platooning but not explicitly
planned as well as (b) for regular driving vehicles. The distinc-
tion between these two cases is shown in Fig. 2. In this section
lego refers to the locally perceived lane of the ego vehicle and
lcoop refers to the locally perceived lane of the cooperative
vehicle. The resulting collectively perceived lane is denoted as
lcoll. It must be stated that in contrast to the fusion of dynamic
objects (e.g. vehicles), possible communication delays can be
neglected since they do not affect static objects. Hence, no
alignment in time is necessary for our fusion approach. Due to
the early stage of development, some assumptions have to be
made: we assume an accurate localization and resulting from
this an error free transformation between coordinate systems.
Based on the lane width of 4m, an accuracy of 0.75m is
in the following considered as sufficient accuracy as with a
typical vehicle width of about 2.20m the vehicle would stay
on its lane. Moreover, only current detections are taken into
account.

A. Convoy Fusion

For some scenarios, like driving in a convoy, the distance
between the ego vehicle ve and the cooperative vehicle vc is
less than the sensing range of lane detection systems.



As shown in Fig. 2 (a), a cooperative vehicle driving ahead
is within the range of the locally detected lane by ve which
leads to an overlap of detected lanes. To determine lcoll, the
perceived lane information must be split into three parts. The
first part is the local perception of the ego vehicle up to the
point where the overlap starts. This part is directly transferred
to the fused lane. The second part is the overlapping section lov
of lego and lcoop. For this section a fusion of the information is
necessary; for this purpose different approaches are possible.
The accuracy of the lane detection tends to be higher the closer
the perception is to the perceiving sensor; thus, we are using
a weighted mean fusion. To achieve a more accurate fusion
result, we use the weight ωcoop = 0.75 for the information
of vc as this information is closer to the perceiving sensor.
However, to not neglect the more precise localization and
to compensate possible inaccuracies the information of the
ego is incorporated with ωego = 0.25 into the fusion. Since
our assumption is that the detection error is higher than the
localization error, we set ωcoop > ωego. Hence, a point P of
lcoll can be determined by Eq. (1) using two corresponding
points from the ego and the cooperative vehicle.

Plcoll = 0.25 · Plego + 0.75 · Plcoop (1)

In order to complete the construction of lcoll, the remaining
information from lcoop is taken into account. Besides this
approach, we considered a regular mean fusion to construct
a globally valid section information for lov. A regular mean
fusion would neglect the fact that the detection of the ego
in the overlapping area tends to be less accurate due to the
high distance to the sensor and possible partial occlusions
by vc. Another approach is to select the information that is
expected to be most accurate. In our case, in the range of
lov, the information from the cooperative vehicle would be
used, since it is closest to the perceiving sensor. However, this
approach would lead to a higher fusion error for an inaccurate
lane detection of vc.

It may occur that lego and lcoop are offset to each other
which would lead to a jump in lcoll at the begin of lov.
For small offsets this could be neglected and the fusion can
be performed as mentioned before. Higher offsets require a
smooth transition from lego to lcoop at lov. For this purpose a
linear interpolation from lego to lcoop in the area of lov could
be applied.

B. Spline Fusion

In regular traffic without convoy driving, vehicles must
ensure a safety distance to the vehicle driving in front which
leads to gaps between the lane detection of two vehicles
as shown in Fig. 2 (b). In this case three to four steps,
depending on the road geometry, are necessary to determine
the collectively perceived lane lcoll. First, it must be deter-
mined if a fusion with a cooperative vehicle is plausible
and valid. Second, if the vehicles relative positions and their
corresponding local detections indicate that a curve is present
between lego and lcoop an estimation of the apex is necessary.
If the lane section appears to be straight, step 2 can be

neglected. Third, based on the known points and the estimated
apex (if exists) a spline fitting must be performed and finally;
fourth, the single parts must be composed to receive lcoll. In
the following sections we will describe the process of our
collective lane detection approach based on these steps.

1) Verification of Fusibility: In case of a convoy fusion
(cf. Sec. III-A) it can be easily determined if a fusion is
possible. For the spline fusion, it is more difficult. For various
scenarios different relative positions for the ego vehicle ve and
a cooperative vehicle vc occur. As we only want to calculate
lanes which are valid and reasonable regarding traffic rules
and possible trajectories we must distinguish different cases
and filter which cooperative vehicles can be considered as
valid for a fusion. An exemplary validation for an intersection
scenario is shown in Fig. 3. The possible motion actions for
ve are driving straight, turning right or turning left.

0°

90°

180°

270°

Fig. 3: Exemplary intersection scenario to show possible fu-
sion candidates for the ego vehicle (blue). Cooperative vehicles
which are on possible trajectories of the ego are considered
as valid for fusion (green). Vehicles which are not considered
since the resulting lane would not satisfy traffic or trajectory
rules are marked red.

We use a left-handed coordinate system to describe the
relative position prel(xrel, yrel) of vc to ve. Ψrel describes the
relative orientation. Considering the scenario shown in Fig. 3
and the possible motions actions, we can impose the following
conditions for a cooperative vehicle to be valid for a spline
fusion.

• (xrel > 0, yrel ≈ 0,Ψrel ≈ 0◦): vc driving in front with
same direction.

• (xrel > 0, yrel > 0,Ψrel ≈ 90◦): vc driving in front and
right with direction to the right.

• (xrel > 0, yrel < 0,Ψrel ≈ 270◦): vc driving in front and
left with direction to the left.

For some conditions, single parameters can deviate by a
defined threshold (e.g. yrel ≈ 0) since the vehicles position
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(a) Spline interpolation with error of about 2.4m.
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(b) Spline interpolation with error of about 0.4m.

Fig. 4: Spline interpolation of a 90◦ right curve (a) without and (b) with apex estimation

can differ inside the lane or even for nearly straight roads a
slight curvature can appear which in results in Ψrel ̸= 0. Based
on the lane width we defined a positioning deviation threshold
tpos = ±0.40m and an orientation deviation threshold tΨ =
±10◦. Similar conditions must be defined for further scenarios,
e.g. a highway with multiple lanes in which yrel should be
less than the lane width to avoid a spline fitting over different
lanes. Moreover, a maximum interpolation threshold ti for the
spline must be defined. If a cooperative vehicle satisfy one of
the corresponding conditions and ds < di, with ds as distance
between the end of lego and the begin of lcoop, a fusion can
be considered as plausible.

2) Apex Estimation: Experiments conducted have shown
that with an increasing curve angle, the spline interpolates
the curve too flat and which leads so significant errors. This
behavior is shown in Fig. 4 (a) for a 90◦ right curve. In this
case, the interpolation shows an error of about 2.4m at the
apex of the curve which does not satisfy the requirements
since following this estimated lane would lead to leaving the
real lane.

To achieve a precise estimation of the unknown lane section,
we must enforce that the spline goes through the apex of
the curve to prevent the spline from being too flat. Hence,
we use a geometrical construction to estimate the apex of
the lane boundaries of the curve and consider this estimated
point as an additional known point for the spline fitting (cf.
Sec. III-B3). To perform the apex estimation, all coordinates
must be transformed into a common world coordinate system.

We use the geometrical construction presented in Fig. 5. We
construct a triangle containing the arc of the curve between
lego and lcoop. Therefore, we extend the lines referring to the
local lane detection of ve in driving direction (red dashed line)
and the local detection of vc against driving direction (blue
dashed line) until they intersect at point Pi. Furthermore, we
connect the last point of lego (Plego,n) with the first point
of lcoop (Plcoop,0) to construct a triangle containing the arc
of the curve we need interpolate. Finally, we calculate the

𝑙𝑒𝑔𝑜

𝑙𝑐𝑜𝑜𝑝

Curve to interpolate

𝑃𝑖
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𝑃𝑙𝑒𝑔𝑜, 𝑛
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Fig. 5: Schematically overview of the geometric estimation of
the apex of the left lane boundary. The estimation of the apex
for the right lane boundary is performed equally.

orthogonal projection from Plego,nPlcoop,0 to Pi. The point of
the projection intersection Plego,nPlcoop,0 is referred to as Pj .
Considering the vector

−−→
PiPj , the point on the curve can be

estimated at about 40% of
−−→
PiPj . The exact value slightly

varies with the curve angle, but experiments have shown that
40% leads to the best approximation for different scenarios.
Hence, the apex or more generally an additional point on the
curve Pc can be determined with Eq. (2).

Pc = Pi + 0.4 ·
−−→
PiPj (2)

It must be stated that this estimation is not an exact calculation
but as shown in Fig. 4 significantly increases the estimation
accuracy.

3) Spline Fitting: Generally, a spline is a piecewise poly-
nomial function. For n + 1 known points (n ∈ N) x0 <
x1 < · · · < xn ∈ R and the corresponding function values
y0, y1 . . . , yn ∈ R a spline S is defined as:

S : [x0, xn] → R with S(xi) = xi ∀i ∈ [0, n], (3)



where i ∈ [0, n − 1], si = S[xi,xi+1] is a polynom in the
interval [xi, xi+1].

As the spline aims to be a smooth interpolation function for
all i ∈ [1, n− 1] the following two conditions must hold:

1) s′i(xi) := s′i−1(xi),
2) s′′i (xi) := s′′i−1(xi).
This leads to the following linear equation system. The

parameters µ0, µn, λ0, λ0, b0 and bn depend on the chosen
boundary condition.

µ0 λ0
h0

6
h0+h1

3
h1

6
. . . . . . . . .

hi−1

6
hi−1+hi

3
hi

6
. . . . . . . . .

λn µn


·



M0

M1

...
Mi

...
Mn



=



b0
y2−y1

h1
− y1−y0

h0

...
yi+1−yi

hi
− yi−yi−1

hi−1

...
bn



(4)

For further information about the linear equation system
and the boundary conditions to calculate splines we refer to
McKinley and Levine [23].

To fit the spline we have to define the known points; as we
want to interpolate between the locally detected lane sections
lego and lcoop, these are the available known points. Since
the subpolynom between the last data point of lego and the
first point of lcoop only depends on the subpolynom before
and after, only a few known points are required for the fitting
and not all points of lego and lcoop. We investigated different
selections for the known points with {2, 3, 5, 10} known points
in lego and lcoop with {0, 1, 2, 5} data points between two
known points. These experiments have shown that a higher
number of known points could not improve the accuracy of
the spline, but the higher number of known points leads to
an increased computational effort. Hence, we take two points
from each lane boundary of lego and lcoop. To fit the spline
only between the local detections, we take the last and third
to last points of the lane boundaries of lego as well as the
first and the third points from the lane boundaries of lcoop
as known points. Furthermore, as described in Sec. III-B2, an
additional known point for the spline fitting is required if the
spline should approximate a curve. If the relative orientation
of the end of lego and the begin of lcoop is > 10◦ we assume
a curve and estimate the apex as an additional fifth point per
lane boundary to fit the spline. Each locally detected lane is
in the corresponding coordinate system of the vehicle which
perceived this section. To fit the spline the determined known
points must be transformed to a common coordinate system.
Hence, we transform all coordinates to the world frame with
the assumption that this coordinate transformation is error free.

After the transformation of all known points the linear
equation system (cf. Eq. (4)) describing the fitting problem can
be solved to obtain the spline interpolating the gap between
lego and lcoop.

4) Final Lane Construction: After the spline fitting we
construct lcoll based on lego and lcoop as well as the spline
S to interpolate between the local detection. Therefore, we
use lego as begin of lcoll. At the end of lego, we sample points
of S with a distance of 0.10m to transfer the information from
the spline to the Lanelet format. Afterwards, we concatenate
these points at lego. At the begin of lcoop, we have a local
detection again and no more interpolation is necessary. As for
the convoy fusion, we use the locally detected lane of vc and
append this information to the concatenation of lego and the
sampled points of S.

C. Information Exchange

For CoLD we should not only consider the perception
side but also the communication. As we set our focus to
the enhancements in perception, the communication will be
only discussed briefly. For our experiments we assume ideal
conditions for the V2X communication without any bandwidth
limitations or communication delays. Hence, we use highly
accurate sampled lanelets as data format to exchange the lo-
cally perceived lanes at each perception iteration. Considering
a perceived lane with a length of 30m, this leads to two
lane boundaries with 300 data points each, leading to 7200
bytes per perceived lane. For multiple vehicles perceiving
not only a single lane but multiple lanes this would lead
to a overload of the V2X communication channel. Thus, the
Lanelet format is not a suitable format to exchange the lane
information. As a format for information exchange, the Beziér-
Spline appears to be well suited. As shown in Sec. II, splines
are capable to model lane sections. Moreover, a Beziér-Spline
is defined by start point, end point, and two additional control
points to form the spline. Using this format an efficient and
accurate information exchange with 96 bytes per lane section,
independent from the length, is possible.

Furthermore, the message frequency should be considered
as there is no necessity to exchange the information each
perception iteration as the lane is static. The ETSI defined
a message format and generation rules for the information
exchange of dynamic objects which can not be applied to
lanes. We suggest an exchange rate depending on the percep-
tion range and the current velocity of the vehicle. Determining
exact frequency suggestions will be part of future work.

IV. RESULTS

For the evaluation of the proposed approach we use the
CARLA simulator by Dosovitskiy et al. [24]. For sensor data
processing, data fusion and evaluation the RESIST framework
of Müller et al. [25] including the extensions from Volk
et al. [3], [4] is employed. First, we present the real-time
capability of our system by a runtime analysis. Afterwards, we
show the performance of our collective lane detection based
on three scenarios (straight lane, 90◦ right curve, and a rural



road) with two vehicles. The evaluation is performed on a
system with an AMD Ryzen 7 5700X @ 3.40GHz, 32 GB
RAM and a Nvidia RTX3080 GPU.

For development purposes we use a generic lane sensor
for vehicle-local lane detection. Using state of the art lane
detectors could lead to uncontrollable errors and furthermore,
most publications only evaluate their algorithms based on
performance metrics like precision and recall but do not
provide any information about the perception error in m.
Moreover, a generic lane sensor allows a detailed evaluation
using different error models such as offset or noise. The
generic lane sensor is implemented in the C++ CARLA API
of the RESIST framework and uses the underlying OpenDrive
Map to generate data points of each lane boundary with a
distance of 0.10m between two points. Each lane is then
represented by two lists of points and corresponds to the
Lanelet format [10] which we use to maintain our lane
information. For our experiments we set the perception range
of our lane detection sensor to rlane = 30m. Moreover, the
functionality of the Lanelet2 framework [11] is used to read
the map transformed by the OpenDrive2Lanelet converter [13]
as ground truth (GT) and the matching module to extract
the corresponding GT for the detected lanes out of the GT
map. For the spline fitting we use the calculation provided by
Aly [14].

A. Runtime Analysis

To show the real-time capability of our approach we exam-
ine both fusion types on the rural scenario with 300 frames.
The results are presented in Tab. I.

mean [ms] σ [ms] max [ms]

Convoy Fusion 2.23 0.42 3.66
Spline Fusion 3.62 0.70 6.62

TABLE I: Runtime analysis for CoLD fusion. Results in ms.

For both fusion types it must be evaluated if an overlap of
the lanes exist which takes about 0.33ms. For the convoy
fusion we observed a mean runtime of 2.23ms including
matching, fusion and concatenation of the information. For the
spline fusion the fusibility check (cf. Sec. III-B1) is performed
in about 0.01ms. Including spline fitting, sampling and the
construction of lcoll we observed a mean runtime of 3.62ms.

Considering the sensor frequency of 100ms as real-time
threshold, both fusion types achieve runtimes far below even
for their maximum runtime.

B. Perception Evaluation

For the evaluation of our CoLD approach we consider the
distance between the collectively perceived lane and the GT.
For performance evaluation, we consider the mean squared
error msel for lcoll with n points as shown in Eq. (5).

msel =
1

n

n∑
i=1

|Ps − PGT |i (5)

Ps refers to a point of lcoll and PGT to the corresponding
GT point. As PGT is determined by a closest point matching
the resulting error depends on the sampling rate of the GT.
We set a sampling distance of 0.02m, as this corresponds to
the maximum accuracy of the CARLA waypoint information.
Regarding safety aspects higher deviations of the perceived
lane are more relevant. Hence, we are evaluating not only msel
but also the maximum deviation. As single outliers can occur
and be filtered out to not affect motion planning negatively,
we consider the 95th percentile of the error in lane detection
to evaluate the safety.

An overview of the observed perception errors and ranges
is presented in Tab. II.

The vehicle-local perception of the ego achieved an error
of 5mm to 10mm which can be attributed to the generic
lane sensor used. The sensor uses the GT as detected lane;
thus, only a minimal deviation through the evaluation process
occurs. The small error appears due to the aforementioned
sampling rate of the GT.

For the convoy fusion we can observed that the perception
error of the collectively perceived lane is equal to the local de-
tection error for all test scenarios. As we construct lcoll solely
out of lego and lcoop, the local perception errors are transferred
to the collective perception. However, this experiment shows
that the weighted mean fusion does not affect the perception
accuracy in terms of MSE and maximum error negatively. With
this observation it can be stated that the error of the collective
perception does not exceed the local perception error. Thus,
under the assumptions made in Sec. III the CP will satisfy
the accuracy requirements if the local perception with real-
world systems achieves a sufficient accuracy. Moreover, the
convoy fusion is robust against minor noise or offset errors
of the local detection as the error does not increase through
the fusion. With a distance dv = 25m between ve and vc
we achieve a total perception range of about 55m. As dv is
not constant due to varying vehicle velocities small variations
occur; hence, the total perception range is not exactly 55m at
each perception iteration.

In contrast to the convoy fusion, the spline fusion lead
to higher errors. For a scenario with a straight lane like
for highways, we observed a very accurate estimation. For
ds = 30m the mean error was 5mm to 10mm, the maximum
error increases up to 0.03m as the spline is not exactly straight
based on small deviations of the known points. However, even
for higher interpolation distances up to 50m the maximum
deviation of lcoll was about 0.05m. Considering the perception
range we achieve an extension from 30m up to 90m with
ds = 30m and 110m with ds = 50m. As for the convoy
fusion it must be stated that the total perception range can
slightly variate due to non constant velocities.

For a 90◦ curve with ds = 20m we achieved a msel
of about 0.03m. The maximum deviation for the right lane
boundary was 0.70m. The low MSE in contrast to the high
maximum error can be attributed to the scenario as it contains
straight sections before and after the curve. However, as shown
in Fig. 4 (b) following the estimated lane would not lead to



Convoy Fusion Spline Fusion
Road type lego lcoll lcoll

Straight Lane MSE (left / right) [m] (0.005 / 0.005) (0.005 / 0.005) (0.005 / 0.005)
MAX (left / right) [m] (0.010 / 0.011) (0.010 / 0.011) (0.027 / 0.028)

Right Curve (90◦) MSE (left / right) [m] (0.005 / 0.005) (0.005 / 0.005) (0.029 / 0.030)
MAX (left / right) [m] (0.010 / 0.011) (0.010 / 0.011) (0.693 / 0.707)

Rural Road MSE (left / right) [m] (0.005 / 0.005) (0.005 / 0.005) (0.023 / 0.020)
MAX (left / right) [m] (0.010 / 0.010) (0.010 / 0.010) (0.560 / 0.572)

Perception range [m] 30.00 55.00 80.00 - 90.00

TABLE II: Results for local perception of an ego vehicle (lego) and the collective perception (lcoll) for convoy and spline
fusion. The perception range depends on the maximum valid interpolation distance for the given scenario. Results in m.

leaving the lane; further, the shape of the curve is modelled
with a sufficient accuracy in comparison to the approximation
without apex estimation (cf. Fig. 4 (a)). Increasing ds leads to
higher errors which could lead to leaving the lane and hence,
do not satisfy safety constraints. If the distance to interpolate
is smaller, the accuracy increases significantly.

Considering a rural road scenario with ds = 20m, we can
observe a msel of about 0.02m which can be considered as
highly accurate. The maximum error over all frames of the
scenario was about 0.57m. However, this significant deviation
only appeared for a single frame (cf. Fig. 6) at the transition
from a curve to a straight section. Further frames have an
error of mostly less than 0.20m. The maximum error averaged
over all frames is about 0.11m which can be considered as
accurate. Figure 7 shows an exemplary estimation for the rural
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Fig. 6: Estimation error of CoLD with spline fusion in rural
scenario. Results in m.

scenario at frame 65; even for an estimation error of about
0.15m, the shape of the approximated lane is similar to the
real lane. With ds = 20m and rlane = 30m a total perception
range of about 80m can be achieved. For higher interpolation
distances (≥ 30m) the maximum error exceeds 1m; hence,
to achieve a reliable accuracy the maximum interpolation
distance for this scenario is about 20m.

As for the convoy fusion, the fusion with spline interpolation
appears to be robust against offset errors in the local detection.
An offset in the local detection leads to an offset in the spline
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Fig. 7: CoLD with spline fusion in rural scenario with a
maximum error at the apex of the curve of about 0.15m.

but not significantly higher than the local offset. However, the
spline interpolation is not robust against noise on the local
detection. If the known points for the spline fitting deviate in
different directions or indicate a wrong direction of the shape
of the lane section, errors of several meters can appear or
moreover, a spline fitting is not possible anymore. However, it
must be stated that the collective perception for lanes as well
as for traffic participants requires a sufficient accuracy of the
local perception to achieve a contribution.

The results of the spline interpolation heavily depend on
the distance to interpolate and the road geometry. However,
for long-distance interpolation, the road layout cannot be
reconstructed safely anymore. Thus, a maximum interpolation
distance of about 20m is suggested, as this corresponds to a
distance with sufficient accuracy in all evaluated scenarios.

Moreover, it must be stated that the maximum deviations
for the 90◦ curve and the rural scenario do not satisfy the
accuracy requirements for autonomous driving. However, the
shape of the lane is modelled with a good accuracy to
make a contribution to the motion planning as the extended
perception range allows to estimate if e.g. a curve follows the
local detection and thus, the speed of the vehicle should be
adapted. Furthermore, the motion planning can be improved



with further vehicle-local perception iterations, based on the
extended sensing this requires only minor adaptions.

V. CONCLUSION & OUTLOOK
Within the scope of this paper we presented a real-time

capable approach for collective lane detection. The system
aims to extend the sensing range for lane detection by using
information from distributed cooperative vehicles to enable a
more detailed motion planning. As long-distance fusion, the
environment (curves, obstacles) between the vehicles cannot
be reconstructed safely anymore we focused on short (convoy
driving) and medium-distance collective perception. In convoy
driving scenarios we use a concatenation of local detections
to extend the sensing range by up to 100%, achieving an
accuracy of 0.01m depending on the local lane detection.
For more distant vehicles a gap between local detections
appears which requires an estimation of this lane section. For
this purpose, we used a spline to approximate the lane by
interpolation between the locally perceived lane sections. To
improve the interpolation we proposed an apex estimation of
the lane in curvy scenarios. The perception range could be
extended by up to 200% in contrast to the local detection. For
all three simulated scenarios we achieved a sufficient accuracy
for motion planning with a maximum deviation of 0.03m for
a straight lane, 0.70m for a 90◦ curve and 0.57m for a rural
road. Experiments conducted to evaluate the runtime showed
a mean result of 3ms to 4ms which can be considered as
real-time capability.

As a next step, various state of the art lane detection
algorithms will be investigated to verify the robustness of the
fusion approach under various conditions with more vehicles.
Additionally, the estimation of the further known point for the
spline interpolation will be optimized based on an approxi-
mation of the curve angle. For further research also possible
message generation rules will be investigated. Moreover, it will
be considered if transmitting previously perceived information
could improve the accuracy of a collective lane detection.
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