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Abstract— Correct and complete perception is key for au-
tonomous vehicles to plan safe maneuvers. Especially under
harsh weather conditions the use of sensing capabilities from
other road users via vehicle-to-everything (V2X) communica-
tion can contribute to more complete perception. However,
information from other road users may contain additional
uncertainties and lead to less accurate perception. Additionally,
attackers may use the V2X channel to transmit malicious data.

For building an accurate environmental model an au-
tonomous vehicle needs as precise information as possible. To
tackle the problems of additional uncertainties within collective
perception we propose a methodology to check perceived
information for its trustworthiness and validity. This is achieved
by evaluating the perception capabilities of a holistic perception
pipeline and checking collectively transmitted information for
consistency. The proposed approach is evaluated under varying
environmental conditions on a simulated highway scenario.

I. INTRODUCTION
Autonomous vehicles play a key role in future mobility.

With the help of driverless cars it is possible to drastically
increase the utilization of vehicles, hence reducing the overall
costs for consumers. Furthermore, autonomous vehicles aim
to improve the safety of transportation and make traveling
more comfortable. To fulfill such promises an autonomous
vehicle needs to have a complete and correct understanding
of its environment to plan comfortable and safe maneuvers.
However, road traffic developments, such as buildings at
intersections, obstruct the vehicle-local field of view and
make environment perception more challenging. Environ-
mental influences like harsh weather conditions further re-
duce the local sensing range and perception capabilities [1].
A solution to cope with such difficult situations is the usage
of collective perception (CP). It enhances local perception
with additional sensor information from other vehicles or
infrastructure elements transmitted by vehicle-to-everything
(V2X) communication.

Information from foreign sources has to be correctly
fused with the local dynamical model (LDM). Compared to
vehicle-local sensor fusion, CP introduces additional difficul-
ties such as bigger latencies, larger errors due to coordinate
transformation, and larger or even unknown uncertainties.
A common way to deal with CP is to transmit perceived
object tracks from the LDM via V2X [2], [3]. This aids
the compensation of transmission delays as it allows to
align the data by predicting object positions with a given
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movement model. Afterwards a track-to-track fusion (T2TF)
algorithm such as covariance intersection (CI) can be used to
incorporate locally and collectively perceived information.

Additionally to the aforementioned problems the trustwor-
thiness, validity, and confidence of the transmitted data is
of great importance. The fewer tracks for a single object
are transmitted, the higher the influence of an inaccurate
state estimation from other cooperative vehicles can get.
Hence, it is important to only fuse that information with the
LDM which contributes to a more complete and accurate
understanding of the vehicle environment. Furthermore, the
influence of inaccurate information from another vehicle may
also be a vulnerability which can be used by an attacker.

The goal of this work is to investigate different optimiza-
tion strategies for the T2TF, which are shown using the
example of CI. The strategies consider additional validity and
consistency checks of collectively transmitted object tracking
information to only fuse accurate and correct information.
Besides the optimization of perception precision a reduc-
tion of vulnerability against attackers is achieved. Possible
tracking-confidences and covariances will be pre-evaluated.
Current environmental influences such as snow, fog, or rain
in combination with the distance of the detected object
are considered for a consistency check of confidence and
covariance matrices transmitted from other vehicles. Invalid,
inaccurate, or impossible state estimations will be neglected
to improve the accuracy of the collectively perceived envi-
ronmental model.

II. RELATED WORK

Collective perception increases the complexity of the as-
signment problem of measurements to tracks as well as the
tracking and fusion of data. For tracking and fusion there ex-
ist two basic methodologies. The first is having a centralized
tracking component which handles sensor data directly [4].
The second approach uses decentralized tracking components
and fuses preprocessed sensor data which is available as
tracks. For CP the second approach (T2TF) has the advantage
that more information about object dynamics are present and
V2X transmission latencies can be compensated [4].

For T2TF there exist different approaches solving the
data fusion problem. CI was one of the first fusion method
under unknown correlations and was introduced by Julier and
Uhlmann [5].

The calculation of the global fused state x̂g with covari-
ance matrix (CM) Pg for two local trackers i and j with state
vectors x̂i, x̂j and corresponding covariance matrices Pi,Pj



is defined by Julier and Uhlmann [5] as

P−1
g = ωP−1

i + (1− ω)P−1
j (1)

x̂g = Pg(ωP
−1
i x̂i + (1− ω)P−1

j x̂j) (2)

ω = argmin detPg, ω ∈ [0, 1]. (3)

For the calculation of the weight ω it is also possible to
minimize the trace (tr) of Pg instead of the determinant
(det). The trace of a matrix corresponds to the sum of its
diagonal values. For a matrix A with size M×M, tr(A) is
defined as

tr(A) =

M∑
i=1

A(i, i). (4)

Since minimizing Eq. 3 leads to high computational effort,
some improvements for the approximation of ω have been
introduced.

To improve the calculation of ω the “Fast Covariance
Intersection” (FCI) by Niehsen [6] uses the traces of the
CMs Pi,Pj . ω is defined as

ω =
tr(Pj)

tr(Pi) + tr(Pj)
. (5)

Besides the trace it is also possible to use Eq. 5 with the
determinant of Pi and Pj to calculate ω.

For three or more tracks, multiple weights ωj have to be
calculated. For n tracks, the following constraint must hold

n∑
j=1

ωj = 1.0. (6)

As presented by Cong et al. [7], ωj for up to n tracks, can
be defined as

ωj =
εj∑n
i=1 εi

, j = 1, 2, . . . , n (7)

with
εj =

1

tr(P−1
j )

. (8)

The “Sequential Fast Covariance Intersection” (SFCI) by
Cong et al. [7] allows a sequential fusion of data received
from other sensors at different points in time. Cong et al. [7]
also prove that SCFI leads to accurate and consistent results
which are independent from the fusion order.

Fränken and Hüpper [8] introduced the “Improved Fast
Covariance Intersection” (IFCI) which uses the information
matrix (I) to define ω as

ω =
det(Ii + Ij)− det(Ij) + det(Ii)

2 det(Ii + Ij)
. (9)

The information matrix corresponds to the inverse of the
CM. For IFCI it is not possible to use the trace instead of
the determinant [8].

As presented by Reinhardt et al. [9], CI is not necessarily
optimal for three or more tracks which is shown by a counter-
example.

Besides the CI, Uhlmann presented the covariance union
(CU) fusion [10]. As explained by Castanedo [11], the CI

addresses only the problem of correlated inputs but not
inconsistent inputs. Two estimations are considered as incon-
sistent when the difference between the estimation is larger
than the provided covariance [11]. To detect inconsistent
inputs in CU, the mahalanobis distance can be used [12].

Another approach for T2TF with consideration of the cross
covariance is presented by Tian and Bar-Shalom [13]. It is
possible to use a recursive strategy to include the fused data
from previous fusion iterations. If a strategy without previous
information is used, fundamental equations from linear state
estimation can be used. For this purpose all tracks must be
from the same point in time, therefore a prediction to the time
of fusion is performed. However, the use of cross covariance
fusion does not provide the best global state estimation [4].

A centralized fusion concept is the “Information Matrix
Fusion” (IMF) by Speyer [14]. IMF uses information from
previous fusion iterations. For the fusion of the estimated
state, the a priori and a posteriori state estimation of a local
tracker must be known [4]. Nevertheless, IMF has shown to
be less robust compared to CI and its optimized form IFCI
regarding their fusion results [4].

In non-linear systems it is difficult to find the correlation
between estimations. Hence, Noack el al. [15] presented a
work in which the estimations are transformed into another
state space with Gaussian densities such that correlation and
covariance can be estimated which enables the usage of CI
in non-linear systems.

The sample-based fusion by Steinbring et al. [16] uses a
small set of samples, which is stored at each sender and be
transmitted together with a state estimation. This enables a
simple and correct reconstruction of the correlations of an
estimation at a central fusion node.

An overview of different methods for data association,
state estimation, and data fusion is presented by Cas-
tanedo [11]. A comparative study on T2TF methods is
presented by Radtke et al. [17]. Five different algorithms
are tested in an indoor localization setup, where the above-
mentioned sample-based fusion [16] achieved the best re-
sults; CI on the other hand provides rather sub-optimal
results. This can also be observed in the comparison of “Safe
Fusion” for correlated inputs towards other T2TF methods
as presented by Nygårds et al. [18]. In some cases the CI
performs equal compared to other methods.

Since the performance of the CI is not sufficient for the
requirements in automated driving and moreover is consid-
ered insecure towards attacks by forged data, we introduce
optimization strategies to compensate these weaknesses.

III. PERCEPTION OPTIMIZATION

As seen in Sec. II multiple approaches to fuse data from
different origins exist. The goal of this work is to improve
robustness of collective perception against environmental in-
fluences and malicious attacks by forged data. Therefore, the
robust but yet non-optimal CI data fusion shall be optimized
such that only accurate and trustworthy data will be used to
contribute to the collectively perceived environmental model.
The validation of transmitted data will happen based on



Track-to-Track Fusion (CI)

Pre-Evaluation of Perception

Matched 
Tracks

Confidence
(𝑅𝑐𝑜𝑛𝑓)

Covariance
(𝑅𝑐𝑜𝑣)

Track – Validation
(Validate Tracks with 𝑅𝑐𝑜𝑛𝑓 , 𝑅𝑐𝑜𝑣)

Fig. 1: Process overview from the pre-evaluation (see
Sec. III-B) of a local perception over the validation of the
received tracks in the track-validaton (see Sec. III-C) to the
T2TF fusion.

a pre-evaluation of a local perception pipeline. With the
pre-evaluation the capabilities of local perception systems
are analyzed such that the T2TF algorithm is capable of
evaluating the trustworthiness and validity of the collectively
transmitted data before fusing it.

An overview of the complete pipeline of our suggested
optimization is presented in Fig. 1. The pre-evaluation
(see Sec. III-B) is performed to generate reference data
Rconf/Rcov for confidence and CMs. The reference data,
paired with the matched tracks, is fed into a track-validation.
The track-validaton performs the optimization strategies (see
Sec. III-C) before the fusion is executed.

In the following, the used perception pipeline for local
and collective perception and the pre-evaluation are described
subsequently the suggested optimization strategies are pre-
sented.

A. Perception Pipeline

For simulation and investigation of CP the RESIST frame-
work [19] with its improvements for environment-aware
collective perception [1] and a sophisticated communication
channel simulation and processing delays [20] is employed.
The framework’s main focus lays on realistic perception
with simulation of environmental influences such as rain,
snow, and fog [21]. Each cooperative vehicle within sim-
ulation performs local detection and tracking. Tracking is
performed by a Kalman-filter [22] with a constant-velocity
model [23]. Hence, track-state and CM consist of the 3D-
position p (in m) and the 3D-velocity v (in m/s). Hungarian
matching [24] is used to associate new detections to present
tracks. Locally perceived information is transmitted by V2X.
For V2X channel simulation the corresponding channel load
is computed based on the analytical model of IEEE 802.11p
developed and validated by Sepulcre et al. [25]. Afterwards
the collectively perceived objects are temporally aligned and
transformed into the ego vehicles local coordinate system

to perform a matching to the objects present in the ego
vehicle’s LDM. Finally a T2TF is performed to build up
the collectively perceived environmental model.

B. Pre-Evaluation of Local Perception

The foundation of the proposed approach is the pre-
evaluation of local perception capabilities. Hence, we assume
that the sensor configuration and the used processing pipeline
for local perception of cooperative vehicles is known, such
that a sound analysis of its capabilities is possible. A cooper-
ative vehicle v has a specific vehicle local perception system
lv . Furthermore, knowledge about the current environmental
condition such as fog including its intensity defined as e is
necessary.

The proposed approach investigates all perception systems
lv considering their perception accuracy in terms of covari-
ance matrices of perceived objects and perception capabilities
in terms of confidence of a track. The perception systems
are evaluated considering different environmental conditions
e and the perceived objects are clustered in distance bins d
of size sbin = 5m. The bin size was chosen since it roughly
corresponds to the length of a vehicle. Splitting the distances
into sections is necessary because it is not possible to create
reference information for every distance.

Additionally, adverse weather is considered for evaluation,
as it has a significant influence on the general perception
quality [1]; it decreases the confidence in detections while
also increasing the variances in the CMs.

The results of a local perception are analyzed to get
realistic and comparable confidences and CMs, to rate if a
received track from a cooperative vehicle is plausible and
can be considered as trustworthy and valid for the fusion.
From these results two weather-related lookup-tables for the
local perception capabilities Rconf(lv, e, d) and Rcov(lv, e, d)
of each specific perception system lv are built. For better
readability the pre-evaluation Rcov(lv, e, d) for a specific
distance bin and weather is abbreviated as Rcov in the
following. Rconf(lv, e, d) is similarly abbreviated as Rconf .

As track confidence the achieved recall [26] at distance bin
d for lv is used. To be classified as true positive detection
for recall calcualtion, an Intersection over Union [27] greater
0.5 must be achieved.

An entry of the confidence matrix Rconf at position (e, d)
describes the pre-evaluated recall for a specific weather rate
e and a specific distance bin d.

The above described splitting is also used for Rcov, which
only describes the variances of the different track-state items
because there exists no information about the correlation
between the state-items. A set of CMs is produced for each
environmental condition e, with each matrix representing a
different distance bin d.



An exemplary reference CM Rcov is shown below:

Rcov =


σ2
p.x 0 0 0 0 0
0 σ2

p.y 0 0 0 0
0 0 σ2

p.z 0 0 0
0 0 0 σ2

v.x 0 0
0 0 0 0 σ2

v.y 0
0 0 0 0 0 σ2

v.z


As an evaluation baseline, a cloudy day without rain is

used. A local perception with varying fog concentrations
is performed to investigate the optimization strategies under
various weather conditions. Therefore, fog is simulated with
a drop diameter of 0.7 µm and densities from 0.01/µm3 to
0.15/µm3 with a step size of 0.01/µm3.

Even with a comprehensive data set, it is possible that no
objects were present for particular distances, and hence no
reference data could be derived. As a result, we use a linear
interpolation to fill in missing confidence and covariance
values by interpolating between recall and variance values.

C. Optimization Strategies

Based on the pre-evaluation of Sec. III-B, our pro-
posed method compares collectively received tracks to pre-
evaluated matrices Rconf and Rcov. This allows a sophis-
ticated validation of the perceived data to improve the
resilience of unoptimized data fusion methods against harsh
environmental conditions. Two different optimization ap-
proaches will be investigated: a simple selection of tracks
without using additional information and a more advanced
filtering based on the pre-evaluation data. We will demon-
strate our approach with the example of CI fusion described
above.

Similar to the CU fusion, we consider the quality of a
local track to decide whether it is fit for fusion. We examine
the difference between the confidence and covariance from
the local tracks to a large set of pre-evaluated confidence
and covariance matrices for various weather conditions. The
strategies mainly concern the optimization of precision, some
of the strategies additionally avoid an influence of a possible
attack.

1) Track Selection: As stated by Reinhardt et al. [9],
the CI is not necessarily optimal for three or more tracks.
For many tracks some information can deviate widely and
therefore affect the fusion result negatively. Hence, one
optimization strategy considers the reduction of tracks used
for the fusion to two. Two ways are considered to select the
tracks used for fusion, they are based on the confidence and
the CM. A first strategy uses the two tracks with the highest
confidence; the other strategy uses the two estimations with
the minimal trace (see Eq. 4) of their CM. This optimization
method can be used with or without a pre-evaluation of the
given confidences respectively CMs. With a pre-evaluation,
the given values are filtered after being plausibilized with
the reference data. This variant is relatively simple and leads
to a reduction in noise, since bad or noisy information is
discarded if there are enough tracks present. If the number
of cooperative vehicles is low, then the number of matched

tracks for an object is also small. In this case the track selec-
tion does not affect the fusion since if less than three tracks
are available, no selection is possible. Also this optimization
strategy only addresses the optimization of quality but not
malicious data. The track selection would consider a forged
track with a high confidence or low covariance for the fusion.

2) Track Filtering: The second investigated optimization
is a filtering of the received information based on a validation
with the pre-evaluated reference data (Rconf , Rcov). This
strategy covers both the fusion precision and the security
aspect. Within this strategy we distinguish between the
confidence based and CM based validation.

Each perception received from a cooperative vehicle has
an assigned confidence, which describes the trustworthiness
of the detection. As described in Sec. I, distant objects are
perceived with less quality [1]. Hence, for higher distances
a lower confidence is expected. If an attacker transmits a
forged track with a high confidence to ensure that the infor-
mation is used for the fusion, this can be validated by Rconf .
The pre-evaluation provides information about how likely a
detection in a specific distance is; a received information
with a distant detection and high confidence is unlikely.
Hence, we can take the corresponding information from
Rconf and verify the received information with a defined
threshold. The threshold value here applies independent to
the distance. Different confidence thresholds are investigated.
If the confidence of the received track differs from the
confidence specified in Rconf by more than the threshold, the
track is discarded. This filtering enables an increase in fusion
quality, because unlikely state estimations which probably
cause an error will not be used for fusion. Furthermore,
filtering implausible confidences could remove knowingly
forged information in case of an attacker.

This approach can be transferred to the CMs of the
received tracks. The pre-evaluation also provides reliable
CMs in relation to distance and weather condition specified
in Rcov. To validate the covariance matrices, a comparison
by the trace or elementwise by the main diagonal is possible.

The main diagonal of the CM represents the variances of
the track-state items. Higher variances occur for inaccurate
estimations such as for distant objects or objects partially
concealed by other objects. Hence, these variances describe
the accuracy of the corresponding state estimation. In order
to achieve a fusion which is as accurate as possible, inac-
curate estimations should not be considered. Based on the
weight calculation of the CI (see Eq. 7) the influence of
such inaccurate state estimations on the fused state is small
but exists and thus should be removed to improve the overall
fusion result.

A larger trace indicates a higher variance in estimation;
thus an estimation with lower trace is preferred. If the trace
of the received information exceeds the pre-evaluated trace
by a given threshold, the received information is considered
as inaccurate and thus will not be used for the fusion. Since
some variance is valid, the threshold should not be chosen



too small. Different trace thresholds

ttrace ∈ {2.0, 3.0, 4.0, 5.0, 6.0}

which apply for all distances are investigated.
Besides the trace, the elements of the main diagonal can

be used elementwise for validation. Therefore, a threshold
for each element must be defined. For an elementwise
comparison a list of thresholds

telem = {1.5, 0.8, 0.2, 2.0, 1.0, 0.3}

is defined. Both ttrace and telem were defined based on the
observations from the pre-evaluation. For the elementwise
comparison a track s (x̂s,Ps) is discarded if for one element
of the CM Ps deviates from the reference by more than the
corresponding threshold. In combination with the filtering by
the trace the following two conditions can be formulated:

tr(Ps)− tr(Rcov) > ttrace, or
Ps(i, i)− Rcov(i, i) > telem(i) for i = 1, 2, . . . , 6

If one of the conditions applies, the track is considered
inaccurate and discarded.

The advantage of the elementwise comparison towards
the comparison by trace is the flexibility and consideration
of deviation in more detail. This allows to fit the filtering
exactly to the specified local perception system lv from pre-
evaluation. Also single deviating values can be discovered
better.

In case of an attack on the communication channel,
an attacker tries to influence the fusion result. Hence, a
forged track would be sent alongside a significant low
CM, because this would lead to a higher influence (see
Eq. 7). As explained, the variances which represent the main
diagonal of the CM are smaller the more accurate the state
estimation is. In contrast to the above described optimization
for inaccurate estimations, Rcov must not exceed the given
track variances by more than the defined thresholds. If one
of the two following constraints for the given CM Pt of
a collectively perceived track and the corresponding matrix
Rcov is evaluated as true, the track should be considered as
invalid and must be discarded.

tr(Rcov)− tr(Ps) > ttrace, or
Rcov(i, i)− Ps(i, i) > telem(i) for i = 1, 2, . . . , 6

IV. RESULTS

To show the advantages of the proposed optimizations for
T2TF at the example of CI fusion, an investigation on a
complex highway scenario with varying fog densities and
number of cooperative vehicles is conducted. As a baseline,
covariance intersection without any optimization is used.
All received tracks are used for fusion; for the fusion with
multiple weights the proposed weight calculation of Eq. 7
is applied. For the evaluation a 400 Frame VIRES VTD
highway scenario with 36 vehicles in total is used from which
21 are cooperative vehicles equipped with sensors [1]. Three
different rates of cooperative vehicles (1 vehicle (5.6%),
5 vehicles (16.7%), and 10 vehicles (30.6%)) are used to

compare the influence of different optimization strategies.
These rates were chosen in such a way that both very low
and relatively high rates, which will not be reached in the
near future, are examined in order to be able to make future-
proof statements. The average velocity is about 14m/s.
The local perception including the tracking is performed as
described in Sec. III. At first a theoretical evaluation of the
approach on the example of a special use case will be shown.
Afterwards the performance metrics “precision” and “recall”
in combination with the variance of the state estimation will
be used for evaluation.

A. Optimization Use-Case

The CI T2TF is vulnerable to inaccurate or forged infor-
mation from an attacker (see Sec. I). This use case will cover
an attacker scenario. However, the attacker scenario is also
applicable to imprecise tracking information. The degree of
influence of forged information is determined by the number
of tracks, the track CMs, and the deviation of the forged
information.

If an attacker sends a forged track with a low CM, this
estimation is considered as good and is used for fusion. The
use of such forged data can cause considerable deviations in
fusion results. Filtering falsified information as invalid, based
on the validation of the confidences and CMs of received
state estimations could avoid an attacker’s effect. A forged
track with a CM close to zero at 100m distance perceived
in fog with high density could be an example of such an
infeasible state estimation.

The following example demonstrates CI’s vulnerability
and the reduction of this vulnerability through our suggested
methods. We assume two correct tracks with the states

x̂c1 = {19.16, 2.37, 0.21, 9.34,−0.12,−0.09}
x̂c2 = {19.10, 2.39, 0.25, 9.30,−0.16,−0.03}

and the same arbitrary but valid CM Pct with tr(Pct) = 7.77.
The track state x̂ consists of position and velocity

x̂ = {p.x, p.y, p.z, v.x, v.y, v.z}.

The fusion of these two states would lead to a correct fused
state

x̂cf = {19.13, 2.38, 0.23, 9.32,−0.14,−0.06}.

Now we include a forged track

x̂a = {20.10, 3.37, 1.22,−25.30,−5.16,−1.03}

with the CM Pa with trace tr(Pa) = 0.77 from an attacker
which is about 50m away.

The exact values of the CMs are less relevant in this case,
more important is that the values of Pa are significantly
smaller than in Pct and close to zero. Since matching only
takes position into account, a significant deviation of the
velocity has no effect on matching. If this track is included
into the fusion with the correct tracks x̂c1 and x̂c2 , it would
lead to an imprecise fused state

x̂wf
= {19.60, 2.87, 0.63,−7.95,−2.67,−0.53}.



TABLE I: Overall recall [%] for a cloudy day, varying fog
densities and different rates of cooperative vehicles

Fog Density (1/µm3)

Cloudy 0.01 0.07 0.13

5.6% Coop. Vehicles

Baseline 14.1 12.8 5.1 1.8
2TracksConf 15.0 12.8 5.1 1.8
2TracksCov 15.0 12.8 5.1 1.8
FilterTrace4 12.0 9.8 2.6 0.9
FilterTrace5 13.8 11.0 3.6 1.8
FilterElement 2.8 2.0 0.1 0.2
FilterConf0.2 3.2 12.8 5.1 1.8

16.7% Coop. Vehicles

Baseline 23.4 22.4 15.6 6.9
2TracksConf 27.0 21.6 15.6 6.8
2TracksCov 23.4 22.2 15.6 6.8
FilterTrace4 20.4 18.6 12.0 4.8
FilterTrace5 21.2 20.0 13.5 6.7
FilterElement 10.9 9.7 7.7 3.3
FilterConf0.2 14.9 22.4 15.6 6.9

30.6% Coop. Vehicles

Baseline 28.0 28.3 22.0 10.9
2TracksConf 28.7 27.6 22.1 10.9
2TracksCov 29.9 28.1 21.8 10.8
FilterTrace4 25.4 25.5 20.0 8.5
FilterTrace5 26.1 26.4 21.4 10.4
FilterElement 18.4 18.6 16.5 6.3
FilterConf0.2 22.9 28.3 22.0 10.9

The estimation error vector

x̂error = {0.47, 0.49, 0.40,−17.27,−2.53,−0.47},

shows significant deviation to the correct state estimation
x̂cf .

It could be observed that the received estimation seems
to be invalid when comparing the CMs elementwise to the
pre-evaluated data on the main diagonal with the difference
threshold vector telem (see Sec. III-C.2). The trace of the
corresponding reference CM Rcov is tr(Rcov) = 6.05. Also
by difference of the traces with a threshold ttrace of less than
5.28, Pa is considered as invalid and thus x̂a will be ignored
for the fusion.

It must be stated that the vulnerability of forged data
cannot be completely avoided. The attacker information will
be used for fusion if there is a reasonable CM, although the
influence of such a false track state could be significantly
decreased by the filtering of invalid tracks. Furthermore, this
example only illustrates the attacker use case. For imprecise
information the validation can be used in a similar way,
with the difference of filtering imprecise data instead of
data which can not be perceived that precisely given harsh
environmental conditions.

B. Optimization Strategies

The presented optimization strategies in Sec. III-C are
evaluated with the following parameterization:

• Baseline CI with all tracks
• 2TracksConf Track selection by confidence

TABLE II: Overall precision [%] for a cloudy day, varying
fog densities and different rates of cooperative vehicles

Fog Density (1/µm3)

Cloudy 0.01 0.07 0.13

5.6% Coop. Vehicles

Baseline 71.8 72.0 79.9 50.0
2TracksConf 66.1 72.2 79.9 50.0
2TracksCov 66.6 72.0 79.9 50.0
FilterTrace4 70.3 75.1 74.4 71.9
FilterTrace5 73.1 71.8 75.8 50.0
FilterElement 97.3 94.4 100.0 100.0
FilterConf0.2 74.1 72.0 79.9 50.0

16.7% Coop. Vehicles

Baseline 61.2 58.9 67.4 67.7
2TracksConf 53.5 56.8 67.6 67.3
2TracksCov 61.0 58.4 67.6 67.3
FilterTrace4 62.4 60.3 73.2 77.2
FilterTrace5 61.9 58.4 71.2 70.7
FilterElement 82.4 80.6 94.7 89.4
FilterConf0.2 66.7 58.9 67.4 67.7

30.6% Coop. Vehicles

Baseline 56.5 54.1 57.4 68.8
2TracksConf 46.7 52.8 57.5 68.8
2TracksCov 48.7 53.7 56.9 68.3
FilterTrace4 57.4 58.1 65.1 77.2
FilterTrace5 58.0 55.6 64.6 72.1
FilterElement 73.3 75.5 85.8 91.5
FilterConf0.2 55.8 54.1 57.4 68.8

• 2TracksCov Track selection by CM
• FilterTrace4 Track filtering with ttrace = 4.0
• FilterTrace5 Track filtering with ttrace = 5.0
• FilterElement Track filtering with telem
• FilterConf0.2 Track filtering by confidence diff > 0.2

The results on recall and precision metrics are illustrated in
Table I and II respectively. The baseline case represents the
original CI as a reference. The two optimization alternatives
for track selection and filtering are discussed in the following.
Some exemplary results for the variances of the position
estimation are presented in Fig. 2. Fig. 2a shows a baseline
evaluation for a cloudy day with 10 cooperative vehicles,
Fig. 2b and Fig. 2c show the evaluations of 2TracksCov and
FilterTrace4 with the same conditions.

1) Track Selection: Two different track selection ap-
proaches were investigated. 2TracksConf considers only
the best 2 tracks per object based on their confidence.
2TracksCov also considers the best two tracks but based
on the CM. It can be seen that the track selection achieves
almost similar results in recall and precision compared to
the baseline. For a fog density of 0.07/µm3 and more than
16.7% cooperative vehicles recall as well as precision show
slight increases. For track selection based on CM the results
show similar recall and precision values as well. These
results indicate that there are not more than two simultaneous
perceptions for the same object in most situations. Hence,
only considering the best two tracks makes one marginal
difference compared to the baseline.

For 2TracksCov at some distances a reduction in variance



of position can be observed as presented in Fig. 2b. For a
distance of 50m the variance in x direction was reduced from
2.2m to 1.7m compared to the baseline case in Fig. 2a. A
similar reduction from 6.5m to 5.5m can be observed for a
distance of 125m.

2) Track Filtering: For track filtering three different ap-
proaches were investigated. Filtering based on the trace of the
CM, elementwise filtering, and filtering based on the track
confidence. For the trace-based approach two thresholds
defined as FilterTrace4 and FilterTrace5 with a threshold
of ttrace = 4.0 and ttrace = 5.0 were investigated. These
thresholds were chosen as they were the most interesting
from the defined ttrace in Sec. III-C. For ttrace = 4.0 high
decreases in recall for low number of cooperative vehicles
have been observed. With more than 16.7% cooperative
vehicles recall only decreases slightly. However, precision
could be increased drastically, especially for fog with high
density. For a threshold of ttrace = 5.0 the precision
improvement compared to the baseline was partially lower
on the one hand but on the other hand the decrease in recall
was not that drastic compared to ttrace = 4.0. Furthermore,
an improvement in position estimation can be observed by
looking at the variances shown in Fig. 2c. For a distance of
125m the variance in x direction was reduced from 6.5m
to 5.0m compared to the baseline case in Fig. 2a.

For elementwise filtering with telem defined as FilterEle-
ment the biggest improvements in precision were observed.
However, this improvement in precision resulted in a severe
drop of recall. Due to filtering inaccurate tracks, some objects
were not detected at all. This resulted in a drop of recall
on the one hand and a more accurate tracking represented
by high precision rates on the other hand. If the accuracy
of tracks is of greater importance compared to the number
of correct detections, this optimization might be a viable
solution. However, the influence on recall should not be
neglected.

As last filtering-based approach the difference in con-
fidence needs to be evaluated. Here, a threshold for the
difference of 0.2 defined as FilterConf0.2 was investigated.
This threshold has been chosen as a deviation in track-
ing confidence by 0.2 is considered high compared to the
tracking confidences found by our empirical studies on the
highway scenario. With this approach the least difference
compared to baseline could be observed for all fog densities.
The results for cloudy showed a decrease in recall and
improvements in precision for less than 30.6% cooperative
vehicles.

V. CONCLUSION & OUTLOOK

In this paper we presented different confidence and covari-
ance based optimization strategies for track-to-track fusion
which have been investigated on the example of covariance
intersection. The suggested methods validate the received
information from an arbitrary number of cooperative vehicles
against local perception capabilities. This validation allows
to reject and filter inaccurate estimations in order to improve
the accuracy of the fused information and to discard invalid

information which is received from a possible attacker. The
presented approach has shown to reduce the recall on the one
hand but improved the precision of data on the other hand
as inaccurate information gets neglected.

The presented generic approach for validation of col-
lectively perceived information can be used for resilience
improvements not only for covariance intersection but other
fusion methods as well. Therefore, other fusion algorithms
shall be evaluated in the future. Furthermore, the validation
of data is also a viable solution for filtering data before
transmitting it. This may be a good solution for reducing
the channel busy ratio when the communication channel is
congested and will be investigated in the future. Moreover,
the presented approach and the chosen parameters shall be
evaluated on additional scenarios and environmental condi-
tions. By combining the suggested optimization strategies
additional improvements shall be investigated.
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(a) Baseline evaluation for cloudy environment and 10 cooperative vehicles.
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(b) 2TracksCov evaluation for cloudy environment and 10 cooperative vehicles.
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(c) FilterTrace4 evaluation for cloudy environment and 10 cooperative vehicles.
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