
APPEL - AGILA ProPErty and Dependency Description Language
Christoph Grimm1, Frank Wawrzik1, Alexander Louis-Ferdinand Jung2, Konstantin Lübeck2, Sebastian Post1, Johannes
Koch1, and Oliver Bringmann2

1TU Kaiserslautern, Germany
2Eberhard Karls Universität Tübingen, Germany

Abstract

We give an overview of the language APPEL, the “AGILA Property and Dependency Description Language”. It is
part of the cloud-based tool AGILA that supports agile development methods. The language allows us to structure and
document the knowledge about system-wide dependencies in a formal, textual form. APPEL models can be uploaded to
the cloud, where they are used as a knowledge-base for continuous verification and validation, from early specification to
run-time verification. We describe syntax, semantics, and demonstrate its application for predicting the performance of
hardware/software systems in the context of the GENIAL! project.

1 Introduction

Modeling and simulation of executable models has its lim-
itation once executable models are not available, or of dif-
ferent domains, or require excessive effort, e.g. in terms
of simulation time. This is the case for the early project
phases, where models still have to be created, starting
from the elicitation of requirements to the formalization
using e.g. SysML. In this context, it is crucial to acquire
and consider knowledge; indeed, knowledge acquisition
and its systematic application in an organization has been
shown to be a key factor for commercial success of inno-
vations [1]. A problem of SysML is that it is made for
modeling experts, which often causes projects to fail due
to lack of support by domain-experts [2].
In this paper, we propose a domain-specific, textual model-
ing language. Its purpose is to lower the hurdle for domain-
experts to document, formalize and share their knowledge.
The language permits to describe possible design alterna-
tives, its performances, properties, constraints and the de-
pendencies between them in a declarative way. It targets
the following improvements:

• closeness to natural language,

• interactive applicability as a script language, and

• integrated means for modeling uncertain properties.

Properties can be seen as an abstract representation of sys-
tem specifications that summarize its intended behavior,
without having to describe details such as concurrency, or
signals. Property specification languages, e.g. PSL (IEEE
1850), give a relation between temporal signals and prop-
erties. APPEL targets a higher level of abstraction, where
properties and constraints are used for system specifica-
tion, and the overall consistency of specified properties and
constraints with the context from the environment, legisla-
tion, previous experiences, or simple natural laws.
In the following, we discuss related work and give an
overview of the application of APPEL. In Section 2 we

give an overview to the underlying ontological model and
the semantics. In Section 3 we describe the language AP-
PEL, and in Section 4 we give an example of the use of
APPEL in the GENIAL! project.

1.1 State of the art and related work
Popular languages for the high-level specification of sys-
tems are UML [3], SysML [4], and OCL [5]. While UML
and SysML allow users to specify systems by diagrams,
and to exchange these diagrams via various textual repre-
sentations (e.g. OMG XMI, UMLDI, or Mof2Text), the
textual representations focus on the exchange of diagrams
for tools, and are not intended to be a human-readable mod-
eling language. SysML v2 [6] is a work in progress that
also includes a textual modeling language. OCL comple-
ments UML and SysML by means to specify constraints
on classes and objects.
However, the combination of SysML v2 and OCL is a lan-
guage for specification of concrete designs, and not neces-
sarily for the representation of knowledge. An extension in
that direction is given by the OMG-ODM metamodel that
permits the description by semantic triples. Compared to
the combination of SysML v2, OCL, and the OMG-ODM
metamodel, APPEL as a single, near-natural language, of-
fers a lower entry-hurdle for non-modeling experts, and
provides support for the specification of probabilistic un-
certainties, which OCL does not.
For the representation of knowledge, OWL ([7], Web
Ontology Language) is popular; a comparison between
SysML and OWL is given in [8]. Its semantic triple struc-
ture positions OWL closer to natural languages. OWL is
often used to close the gap between natural language spec-
ifications and formal models, e.g. in [9–11]. The mapping
of a language to an ontology has also been done in Guiz-
zardi’s multi-level theory [12].
While OWL in many cases, e.g. [9–11] successfully per-
mits to bridge the gap to near-natural language specifica-
tions, it lacks support for hard, numerical constraints and
mathematical dependencies that are offered by APPEL.

As a potential use-case, we demonstrate the very early
evaluation of embedded automotive systems (without be-
ing limited to that); it supports in particular the model-
ing of knowledge of functions, possible logical architec-
ture, technical architectures and possible HW/SW map-
pings. A potential analysis can then be done by constraint
propagation methods, e.g. to get very early estimations
of performance properties. However, this is based on ex-
pert knowledge, not on simulation as e.g. in Eclipse’s
AMALTHEA/APP4MC [13].

1.2 Overview and context
The language APPEL is developed in the context of the
tool AGILA. AGILA targets the knowledge-based analy-
sis of mechatronic and electronic systems, from the early
requirements elicitation to operation at a very high level.
Its central element is a graph data base that stores se-
mantic triples and that The APPEL compiler generates
these semantic triples. A semantic triple is a set of three
entities that represents a statement in the form of sub-
ject–predicate–object, e.g. [A] car has wheels. APPEL
and AGILA furthermore permits triples with numbers and
(in-)equations, e.g. [A] car has 4 wheels.
For analysis, we use a constraint propagation mechanism
in the tool AGILA, based on the AADD-framework de-
scribed in [14]. Alternatively, an external reasoner can be
used on the semantic triples. The implementation of these
tools is a work in progress, while the APPEL compiler that
generates the semantic triples and uploads them into the
data base is finished as described in Sections 3 and 4.

Requirements
elicitation Development Operation

Knowledge engineering; modeling of universal truths like
Natural laws, architectures, known dependencies & experiences

AGILA: Database with semantic triples, constraint propagation

1

2 3 4

Instances linked with classes from libraries

Figure 1 Use of APPEL in AGILA.

APPEL is intended for use as a modeling language in the
use cases (1) - (4) that are also shown in Figure 1:

(1) Knowledge engineering: It is used for modeling “uni-
versal truths” such as natural laws, taxonomies of
known functions and architectures of general value,
but as well performance models, equations or meth-
ods for choosing parameters of variants; we refer to
such models as classes; collections of classes are a
knowledge base, short library.

(2) Requirements elicitation: Specification of instances
with concrete, required properties. Collections of
such instances are a design; APPEL links instances
to its classes and enables consistency checks by AG-
ILA’s constraint propagation.

(3) Development: Revision of specification and design
decisions; in an agile development process, changes
of a property can be announce quickly. The impact
of the changes can be observed continuously via the
propagated constraints.

(4) Operation: During operation, runtime-verification
might be a use-case that we do not target in this pa-
per: after deployment, monitors would have to com-
pute properties based on sampled signals.

Focus of this paper is in particular the modeling language
for application in the steps (1), (2) and (3). The purpose
of these models is the very early check of the consistency
of the requirements each other and the knowledge base by
constraint propagation.
The constraint-propagation is for use cases (2) and (3) is
implemented in the tool AGILA. It is based on a semi-
symbolic approach using AADD and BDD introduced in
[14, 15], but extended with the ability to propagate con-
straints in a bi-directional way. For the case that an in-
consistency is detected, e.g. a requirement that cannot be
satisfied, an error is reported; see Section 2.2.4.
The runtime verification (4) is subject of future work.

2 Basic vocabulary and consistency

The APPEL language consists of three parts: first, the ba-
sic vocabulary. It follows the way how ontologies are de-
signed. It can be considered as a top-level ontology from
which all further classes can be derived. It could also be
implemented by a UML profile for modeling very abstract
mechatronic systems. Second, properties and dependen-
cies. They are inspired by OCL and provide means to spec-
ify Boolean and arithmetic dependencies on the elements
of mechatronic systems. Third, complementary documen-
tation and administrative information such as pictures, PDF
files, users and access rights etc. that is not in focus of this
paper.

2.1 Basic vocabulary
The basic vocabulary and language constructs of APPEL
are aligned with the Genial Basic Ontology (GBO) that is
based on the Basic Formal Ontology (BFO [16]), and leans
on the ISO 26262 vocabulary:

• Element – An element is the base class of design
or library elements. An element has a collection of
properties (see below). An element can also contain
natural-language description or complementary files,
e.g. drawings, or video recordings.

• Function – A function is an element that specifies an
abstract objective in a declarative way. The objective
of the function is described in the field description in
natural language.

• Component – A component is an element that imple-
ments a function by arbitrary means.

• Processor – A component that is a hardware part
which executes software.

• Software – A component that is a software element or
software unit which runs on a processor.

Note, that the above classes act as base classes in APPEL
models and are intended to offer a low entry hurdle, while
the BFO and ISO 20626 offer more precise definitions, see
Section 3.3. APPEL allows a developer to describe ele-
ments using relations and properties. The following rela-
tions are pre-defined:

• hasElement – describes the hierarchical de-
composition of an element (Function, Component,
etc.) into further elements. The hasElement relation
can be labeled with an integer range that describes a
possible number of elements.

• isA – describes the inheritance relation between two
classes.

• isInstanceOf – links an instance with the related class.

• isImplementedBy – links a function with components
that implement it (inverse relation: implements).

• isExecutedBy – links a software with the processor on
which it runs (inverse relation: executes).

• hasProperty – specifies a property of an element.

The relations can be used to specify relations between
classes or instances of elements. The above basic vocabu-
lary is defined more formally in the GENIAL! Basic On-
tology (see Section 3.3). This ontology gives the language
precise, formal semantics for application in reasoning. Us-
ing the vocabulary, we can give descriptions with semantic
triples like:

LowPassFilter isA Filter
LowPassFilter implementsFunction Interpolation
Filter1 isInstanceOf LowPassFilter

2.2 Properties and dependencies
Elements have a collection of properties. A property is a
variable that has an unknown value, and optionally a unit.
For this unknown value, kind, type, and optional domain
restriction, and an optional dependency expression give
further information or constraints.

2.2.1 Kind and type of properties
We distinguish properties of the kind Quantity, Require-
ment, and Performance. The kind gives its domain restric-
tions and dependencies different consistency semantics as
described below.

Quantity The declaration of a quantity introduces a vari-
able of one of the following types:

Real: The value is from the reals. A unit and/or dimen-
sion can be specified.

Int: The value is from the natural numbers. We do cur-
rently not consider units as meaningful here.

Bool: The quantity can take a value from {true, f alse}.

String: The quantity is a string; strings are not used for
constraint propagation beyond checking of equality.

Semantics: A quantity declaration introduces a variable
that takes an (unknown) value from the set defined by the
type with an optional unit.

Requirement A requirement is a predicate that shall
evaluate to true for a valid design. Hence, it is formally
equivalent to a quantity of type Bool. However, the user
interaction in case of inconsistencies can be handled in a
different way by tools for visualization, e.g. to show that
the specification is not consistent in this point.

Performance A performance is an indicator for a sys-
tem performance that is subject to e.g. optimization. We
assume it as a quantity of type Real with an additional an-
notation that announce whether it shall be maximized or
minimized. This allows users to specify e.g. Key Perfor-
mance Indicators.

2.2.2 Domain restrictions
A domain restriction directly introduces constraints for a
property. This constraint models the uncertain information
that we have on the unknown value. It can be given by:

• An interval, where e.g. upper and lower bounds are
floating-point representations that gives a safe inclu-
sion of the unknown value (For Int, Real).

• Probabilistic properties: either the mean value, vari-
ance and skewness, or the mean value and a con-
fidence interval (Real), or the discrete probability
(Bool).

Semantics: the domain restriction restricts the value of a
property to those that are between upper/lower bounds, or
it gives it the semantics of a random variable from a pro-
cess with the given statistical properties.
Note, that for an implementation of the language, an accu-
rate representation of values is not required. We consider it
as sufficient to be able to give sound abstractions thereof.
To give an example from our proof-of-concept implemen-
tation: we represent the unknown real value of a quantity
of type Real by safely rounded floating point numbers: π

is represented by an interval [π−ul p,π +ul p], where ul p
is the unit of least precision of its floating point represen-
tation. Overflow and other special cases (e.g. division by
zero) are handled via symbols for the ranges Reals (all re-
als) or RealsOrNaN (a Real number, or a NaN result).
The domain restriction allows users the specification of a
value range. An example for the specification of an in-
terval and a probabilistic variable that lies in the interval
[500..1000] with a confidence of 6 and a mean value of
750 is:

Filter1 hasProperty fc: Real(200..220) [Hz]
Filter1 hasProperty a0: Real(500..1000, 3*sigma, 750)

2.2.3 Dependency specification
The dependency specification of a property describes a re-
lation between a property and other properties. The rela-
tion can be specified by a Boolean (and, or, not) or arith-
metic (+, -, *, /) expression. Furthermore, pre-defined
functions include sqr,sqrt,exp, ln functions.
Semantics: for the (unknown) value of a property, the de-
pendency specification must hold.
Note, that comparison operations (>,<,=,>=,<=) con-
vert Real/Int values into a Boolean value that can be used
in Boolean expressions. The ITE function can (also) select
two Real value representations from a Boolean value repre-
sentation, and thereby permits to model the dependency of
Real values from Boolean values. Furthermore, rounding
functions convert from Real values to Int values.
A probabilistic property p is converted by

• interval(p,con f idence) to an interval, and

• con f (p, interval) to the respective probability.

2.2.4 Consistency
APPEL models have no operational semantics; its seman-
tics is purely denotational, given by the declarations of
properties. The property kind gives information on the se-
mantic intention of dependency and domain restriction of
the property:

• A quantity is a property in which dependency and do-
main restrictions must be satisfied; violations are not
possible, e.g. as it models a natural law.

• A requirement is a property in which dependency and
domain restrictions must be satisfied for a valid de-
sign.

• A performance is a property in which dependency and
domain restrictions must be satisfied, and whose value
is subject to optimization.

This information can be used for various purposes by tools.
For example, one can check models for consistency, i.e. if
there are requirements or properties that contradict each
other. A model is considered as consistent, if there poten-
tially exists at least a single combination of values for all
properties such that

• all properties fulfill its domain restrictions, and

• all dependency specifications are satisfied.

A model in which we can show that a property (incl. do-
main restriction, dependency) is not satisfiable is called in-
consistent.

2.2.5 Inheritance
For the inheritance (isA) and instantiation
(isInstanceOf) relations, APPEL follows the Liskov
principle [17]. Hence, subclasses are related to super-
classes such that a subclass can be used instead of the
superclass:

• subclasses inherit the properties from their superclass,
with the same types,

• domain restrictions must be subsets of the domain re-
striction of the superclass,

• subclasses implement (in the sense of giving imple-
ments relations) at least the superclass functions.

Note, that in addition, the dependency expressions shall be
free effects that violate the Liskov principle. Hence, the
dependency of a superclass must result in a safe inclusion
of all dependencies of its subclasses. More complicated
violations could be introduced in particular by multiple in-
heritance. In order to not complicate the modeling – in the
end we target domain-expert users, and not modeling ex-
perts – multiple inheritance and refinement of probabilistic
properties are not supported.

3 APPEL Syntax

3.1 Lexical elements and scope
APPEL uses space characters, tabulators and carriage re-
turn/line break as white space elements. APPEL is case-
sensitive, hence isA and isa are two different tokens.

Comments Comments start with “//”; the rest of the line
is considered as a comment. We do not ignore comments,
but keep them as description in the AGILA Database (see
Figure 1). All comments before a statement, and in the
same line are considered as documentation for it.

Number literals Simple number literals are defined like
Double resp. Int values in usual programming languages.

Keywords Keywords of APPEL are written in the syntax
definition in quotes. To improve readability of semantic
triples, we allow the keywords hasProperty / Property,
hasPerformance / Performance, hasRequirement /
Requirement as alternative lexemes.

Identifiers and their scope An identifier is a globally
unique reference to an artefact: a package (a library or a
design), an element of a package, or a property. It consists
of names that are separated by dots. Names start with a let-
ter (a-zA-Z) and are followed by a letter or a digit (0-9) or
an underscore (_). A name must not be equal to a keyword.

• The name of a package is a single name, e.g.
circuits that is not used by any other package.

• The name of an element is unique in a design; there
exists no other element in a design with the same
name. It consists of the name of the library or de-
sign, and the name of the element, separated by a dot,
e.g. circuits.SigmaDeltaADC.

• An identifier of a property (of an element) is
unique in that element, and for example the iden-
tifier circuits.SigmaDeltaADC.bitwidth refers to

the property bitwidth in the element SigmaDeltaADC
in the package circuits.

Artefacts can always be accessed by its identifier. If a name
is used, the last used package and element are used to ex-
tend a name to the identifier.
Alternatively, elements and properties can be accessed by
giving a path across the relations given in Section 2, start-
ing from a current element it.
For example,

["it"] (relationNAME "->" elementNAME)+

refers to an element, and

["it"](relationNAME "->" elementNAME)+ "." propertyNAME

refers to a property.

3.2 Syntax
In the following we give an overview of the syntax of AP-
PEL, partially in an extended BNF notation. Rules start
with a small letter, terminals resp. literals are written in
capital letters, e.g. NUMBER, NAME. We furthermore
give some simple examples of the syntax. APPEL mod-
els are structured in packages that are either libraries or
designs. Libraries hold classes that model generally valid
facts, e.g. natural laws or known architecture variants. De-
signs hold instances that must be consistent with the facts
from the libraries. Each package has a name (NAME) and
consists of a collection of triples:

package :- ("Library" | "Design") NAME
triple*

In the following we explain informally the syntax of
triples.

Inheritance and instantiation The most important
triple permits the inheritance of classes from another class,
or to create an instance.

NAME ("isA"|"isInstanceOf") classNAME

As a running example, we create a library that holds some
general axioms about circuits; the dots indicate that we
need to complete the running example in the following:

Library runningExample
LowPass iaA Function
...
RCLowpass isA Component
...

Alternatively, we allow for the pre-defined classes Func-
tion, Component, Processor and Software the equivalent
syntax ClassNAME NAME, e.g.:

Library runningExample
Function LowPass
...
Component RCLowpass

Hierarchical de-composition The hierarchical de-
composition can be modeled by triples of the form:

["It" | elementNAME] "hasElement"
NAME ":" [NUMBER[".." NUMBER]] elementClassNAME

The hasElement relation has an optional cardinal-
ity. It specifies that the subject consists of a range
number..number or a constant number of elements from
the class elementClassName. We can now express some
relations for the running example, e.g.:

RCLowpass isA Component
It hasElement R1: Circuits.R
It hasElement C2: Circuits.C

Note, that the logical architecture as the de-composition of
functions and features into subfunctions in a similar way.

Logical, technical and HW/SW architecture The
technical architecture (mapping functions and features to
components) can be modeled with the predefined relations
implements/executes and its inverse relations from the
GBO:

["It" | elementNAME]
"implements" | "isImplementedBy" |
"executes" | "isExecutedBy")

elementTarget ("," elementTarget)*

For the running example, the following would state that
and RC low pass implements a low pass function:

RCLowpass isA Component
...
It implements LowPass

Other possible implementations could be digital filters,
software implementations, etc. In a similar way, the predi-
cates executes / isExecutedBy can be used to model the
HW/SW architecture at a very high level.

Properties Properties can be of the kind quantity, perfor-
mance, or requirement. In deviation to the classical seman-
tic triples, they have additional elements.
Quantities have a type, and optionally a domain restriction,
a unit, and a dependency expression:

quantity :- ["It" | "elementNAME"]
"[has]Property" NAME ":"

type [domainRestriction]
["[" unit "]"]
["=" expression]

type :- "Real" | "Int" | "Bool" | "String"

domainRestriction :-
"(" (const ",")* const ".." const ")"
| "(" [const ","] "TRUE" ")"
| "(" [const ","] "FALSE" ")"

In the production quantity, unit is an expression that con-
sists of unit names, e.g. m/s2; we don’t describe the unit
system of APPEL/AGILA here further.
type and domainRestriction describe the property’s
domain, where const is a production that can be evaluated
to a number. Unlike in most modeling languages, we allow

properties and literals to hold uncertain values, specified by
ranges, sets, probabilities. Hence, domainRestriction is
given by

• an interval specified by (lb..ub), where lb, ub are
Double resp. Integer literals (for Real, Int type)

• the probabilistic properties confidence, skewness, and
confidence interval bounds (for Real)

• TRUE or FALSE (for Bool)

• TRUE or FALSE with a parameter that specifies the
probability of the values TRUE resp. FALSE.

Also, expression is an arithmetic or Boolean expres-
sion. In the expression, the usual operators are allowed;
in addition, pre-defined constants (PI, e), and functions
(sqrt, sqr, exp, power2, ite). Of particular relevance is
the availability of a function that search for elements of
a particular class: findElement(className) and hasEle-
ment(className). This function search – in the current
library or design – an element that is either a class itself or
an instance of the class.
Note, that the intended analysis is constraint propagation,
e.g. by symbolic methods. Hence, we allow instead of
literals in expression also the combination of a type with
domain restriction:

literalOrType :- NUMBER | "TRUE" | "FALSE" | STRING
| type [domainRestriction]

With the above constructs, we can further extend the run-
ning example with a property fc that depends on the values
of components R1,C1 that have an accuracy of 10% with a
confidence of 2σ :

RCLowpass isA Component
It hasElement R1: Circuits.R
It hasElement C1: Circuits.C
It implements LowPass
It hasFile "schematic.spice"
// f_c is the corner frequency.
It hasProperty f_c: REAL(0.0 .. 1000.0) [kHz] =

1/(2*PI*R1.value*C1.value*Real(sigma2, 0.9..1.1))
// Chip area; we neglect interconnect.
It hasProperty area: REAL(0.0 .. 1000.0) [um2]

= R1.area + C1.area

Performances and requirements have an implicitly known
type (Real resp. Bool), hence:

performance :- "Performance" NAME
[domainRestriction]
["=" "MIN" | "MAX" "(" expression")"]

requirement :- "Requirement" NAME
[domainRestriction]
["=" expression]

The performance statement gives an expression that is
subject to minimization (MIN) or maximization (MAX).
The requirement statement gives a Boolean expression that
must evaluate to true if no other domain restriction (e.g. to
false) is specified. In the running example, we add some
requirements:

RCLowpass isA Component
...
It hasRequirement not(hasElement(Digital.clock))
It hasPerformance area = MIN(...)
It hasRequirement maxArea = (area < 1.0 cm2)

The example library gives a very simple example how to
create a library that is used as a knowledge base of general
facts and dependencies that can be use to validate the speci-
fication of a concrete design very early development during
specification and architecture exploration. The running ex-
ample might be used to very quickly check the feasibility
of e.g. a filter specification:

Design exampleDesign
...
LowPass1 isInstanceOf RCLowpass

It hasProperty f_c: Real(10.0 .. 11.0) [kHz]
It hasRequirement maxArea = (area < 10.0 [um2])

With further dependencies in the elements R,C, e.g. a con-
straint network can estimate the chip-area, based on the
corner frequency fc, the architecture (RCLowpass), and es-
timations for the size of R1,C1. If there is no value pair for
R1,C1 that satisfies the requirement maxArea and yields a
apecified corner frequency, the design is inconsistent.
Chapter 4 gives a comprehensive example for HW/SW
systems.

3.3 Mapping to the GBO
A proof-of-concept implementation of APPEL has been
implemented that can either process complete files or be
used interactively. After sufficient information has been
collected, the compiler calls the REST API of AGILA and
uploads the element into the AGILA data base.
In AGILA, elements are assigned to the pre-defined classes
of the GENIAL! Basic Ontology for HW/SW Systems
(GBO). The GBO is a top-level ontology. It acts as an
overall ontology where things/classes/concepts are classi-
fied and defined more precisely. The GBO defines classes

• in line with the ISO 26262 vocabulary, e.g. differen-
tiating precisely between component, hardware part,
software unit, software component, and

• extending the BFO [16] that introduces precise defini-
tions of classes such as function, continuant, quality.

A domain expert using APPEL who is supposed to con-
tribute expert knowledge from his expertise might not have
this understanding of the definitions in ISO26262 or BFO.
For him, APPEL provides a low entry hurdle, while a
knowledge engineer, if necessary is intended to classify the
ontology in more detail. Nevertheless, APPEL suggests a
reasonable initial classification for a model-expert driven
classification into the GBO and the BFO [16] classes that
act as top-level ontology and provide an initial formal ap-
paratus for reasoning.
To illustrate the difference between the APPEL vocabu-
lary and the definitions in the GBO, we show two terms
with its definitions used in the knowledge base. Figure 2
shows the definition of component, which is more general
and follows the intuition.

Figure 2 APPEL vocabulary definition of Component.

On the other hand, the definition of component in ISO
26262 in Figure 3 requires the understanding of a modeling
expert (e.g. an ontologist). Besides others, the understand-
ing of granularity (order in the hasParts resp. hasElements
hierarchy), of other definitions (e.g. what a system is) are
aspects to consider when classifying this element.

Figure 3 ISO 26262 definition of Component.

4 Application in GENIAL!

The GENIAL! research project aims at the creation of an
innovation roadmap for microelectronics in the automotive
industry. Innovative functions are becoming the driving
force behind the development of current and especially fu-
ture mobility. For the realization of many of those inno-
vative functions a large number of hardware and software
components have to be combined: Starting at different sen-
sors which provide a variety of data which, after initial pre-
processing, will be used in multiple stages such as percep-
tion, prediction and control. These stages can either run in
parallel or sequentially. All those steps create a functional
network starting at the sensor and ending at the actor. To
aid the modeling process of such a complex system func-
tion in an early development stage, APPEL can be used

• for creating a (generally valid) knowledge base that
includes in particular models of the estimated, future
properties and performances, and

• for modeling various future architectures, and getting
very quick evaluations of its properties and perfor-
mances,

which will be demonstrated briefly in this section.

4.1 Modeling expert knowledge
In an APPEL library, generally valid knowledge about
HW/SW architectures is modeled by classes that describe
the possible design space of innovative HW/SW systems.
We focus on innovative HW/SW systems such as neural
networks and sensor data processing. The modeling strat-
egy is as follows:

• functions are used to describe high-level features,
their properties, and their requirements,

• processors and components are used to model avail-
able hardware, that implement a function or execute a
software, and

• software is used to model software components and
-units that implement a function.

4.1.1 Overall HW/SW library
The overall library is work in progress and structured as
follows: For example, we give functions to preprocess
data, or to compute deep neural networks (DNNs). For
the functions, we give relevant properties that must also be
provided by the respective implementation (similar to in-
terfaces in programming languages):

Library HwSw

// Functions, subfunctions, possible realization
(...)
preprocess isA Function (...)
computeDeepNeuralNetwork isA Function (...)

Property (...) // more properties, see below
(...)

Furthermore, we provide possible implementations of the
functions, e.g. a HW or SW implementation, as well as
HW components that execute SW.

// Implementation variants for functions
DeepNeuralNetworkSW isA Software

It implements computeDeepNeuralNetwork
It hasElement [1..INF] DeepNeuralNetworkLayer

DeepNeuralNetworkLayer isA Software
Property C: Int
Property C_w: Int
(...) // see below

// Some processors, e.g. a HW accelerator
DeepNeuralNetworkHW isA Processor

It executes DeepNeuralNetworkSW
Property fclk: Real(0 .. 1e9) [Hz]

UltraTrail isA DeepNeuralNetworkHW
Property fclk: Real(2.5e5 .. 4e5) [Hz]
(...) // see below

Note, that APPEL does not provide specific means for
modeling elements for ports and signals. Generally, we
consider them as part of a more refined design that would
be realized later within the development process.
However, to model timing constraints, effect chains or
communication bottlenecks, basic classes for communica-
tion are provided as a library that includes port, channel,
wire, air as means for communication. This library just
gives a basic high-level framework and can be extended
(which was not needed for the example).

4.1.2 Modeling the performance of a neural network
hardware accelerator

The neural network hardware accelerator UltraTrail was
introduced by Palomero et. al. [18] and consists of a MAC
array to execute convolutional computations and an out-
put processing unit (OPU) for applying additional activa-
tion and pooling operations to the output of the MAC array.
There are several memories (WMEM, BMEM, FMEM0-2)
connected to the MAC array and the OPU acting as input,
output, and temporal storage for the neural network being
processed. Figure 4 shows the system architecture of the
UltraTrail accelerator.

WMEM
1024×512b

FMEM2
160×64b

FMEM1
280×64b

FMEM0
512×64b

BMEM
64×64b

MACArray
8×8

LMEM
112×160b

OPU

C
on
tro
lU
ni
t

In
te
rc
on
ne
ct

Figure 4 Overview of UltraTrail system architecture
[18].

The MAC array consists of 64 MAC units in an 8 × 8
grid. Each MAC unit is capable of an 8-bit by 6-bit mul-
tiplication and a subsequent 8-bit by 8-bit addition. The
whole MAC array is implemented as a combinational cir-
cuit which allows for 64 MACs/cycle. The OPU connected
to the MAC array is also implemented in a fully combina-
tional fashion and therefore only takes one clock cycle to
process. A schematic overview of the MAC array is pre-
sented in Figure 5.
The authors propose a cycle accurate analytical timing
model for mapping neural networks (software) onto the Ul-
traTrail accelerator (hardware). In which each neural net-
work layer is described as a 6-tuple l = (C,Cw,K,F,s, p)
which can be directly implemented as a Software
DeepNeuralNetworkLayer class in APPEL with the fol-
lowing properties:

Property C: Int (1 .. 56) // num. input channels
Property C_w: Int (1 .. 127) // width of input channel
Property K: Int (1 .. 56) // num. of output channels
Property F: Int (1 .. 15) // filter width
Property ns: Int (1 .. 7) // stride
Property p: Bool // padding

The equations from [18] describe the timing behaviour
of the accelerator when computing a neural network and
can be modeled as APPEL properties of the Processor
UltraTrail class:

Property s: Int = power2(ns)
Property C_w_hat: Int // eq. 8

= ITE(p, C_w + 2*floor(F/2), C_w)
Property a_w: Int = floor((C_w_hat - F)/s + 1)// eq. 9
Property C_wb: Int = floor(F/2) // eq. 10
Property a_pb: Int // eq. 11

= ITE(p, floor((C_wb - 1)/s + 1), 0)
Property MAC_notb: Int // eq. 12

= sum_i(0, a_pb - 1, floor(F/2) - s * i)

ii

j
tp

MAC

wij

ii

j
tp wij

jo

partial sum weight

input channel value output channel value

W
M
EM

FM
EM

0-
2

FMEM0-2

OPU

7
0p
0 0

0
0p
0 0

1
0p
0 0

2
0p
0 0

3
0p
0 0

4
0p
0 0

5
0p
0 0

6
0p
0 0

w00 w0j

w1j

w2j

w3j

w4j

w5j

w6j

w7j

0i

0
tp 1

tp 2
tp0

t+1p 1
t+1p

3
tp2

t+1p
4
tp3

t+1p
5
tp4

t+1p
6
tp5

t+1p
7
tp6

t+1p 7
t+1p

1i

0o 1o 2o 3o 4o 5o 6o 7o

2i

3i

4i

5i

6i

7i

w01 w02 w03 w04 w05 w06 w07

w10 w11 w12 w13 w14 w15 w16 w17

w20 w21 w22 w23 w24 w25 w26 w27

w30 w31 w32 w33 w34 w35 w36 w37

w40 w41 w42 w43 w44 w45 w46 w47

w50 w51 w52 w53 w54 w55 w56 w57

w60 w61 w62 w63 w64 w65 w66 w67

w70 w71 w72 w73 w74 w75 w76 w77

LMEM0 LMEM1 LMEM2 LMEM3 LMEM4 LMEM5 LMEM6 LMEM7

t

Figure 5 Schematic view of the MAC array [18].

Property Fw: Int = a_w * s + F - s // eq. 13
Property C_we: Int = Fw - C_w - C_wb // eq. 14
Property a_pe: Int // eq. 15

= ITE(p, floor((C_we - 1)/s) + 1, 0)
Property MAC_note: Int // eq. 16

= sum_i(0, a_pe-1, floor(F/2)-s*i-(C_wb-C_we))
Property t_l: Int // eq. 17

= 1 + ceil(C/8) * ceil(K/8)
* (a_w*F - MAC_notb - MAC_note)

To predict the runtime T (L) in clock cycles of all neural
network layers l ∈ L the runtimes t(l) have to be summed
up

T (L) = ∑
l∈L

t(l)

For each neural network layer a concrete instance
of Software DeepNeuralNetworkLayer is instantiated
with the corresponding layer parameters as properties. To
obtain the runtime of a neural network on the UltraTrail ac-
celerator in seconds τ(T (L)) the following APPEL prop-
erty has to be evaluated:

Property tau: Real [s] = T_L/fclk

4.2 A voice-control functional network
As one moves forward to the development of a concrete
system, APPEL can be used to model and analyze concrete
designs at a very high level:

• Requirements and intended functions are modeled by
APPEL functions with properties and constraints.

• The logical architecture (breakdown of function)
to sub-functions is modeled by a structural de-
composition of these functions.

• The technical and HW/SW architecture (mapping
of functions to components) is modeled by the re-
lations implements resp. isImplementedBy and
executes resp. isExecutedBy.

In particular, the analysis targets to get a very early per-
formance estimation: the number of clock cycles for a SW
unit running on e.g. an UltraTrail Processor.
A complex system-function could for example be a voice-
control interface in a car with which it would be possible
to open the trunk when standing in front of the car, start
music playback or the car itself. However, the different
components of this system-function can be implemented
in several ways.

Post-processing Post-processing

Action:
Open Trunk

Action:
Start Car

Action:
Play Music

Voice Activity
Detection (VAD)

MFCC
Computation

Key-Word
Spotting

Driver
Mic

Cabin
Mic

Outside
Mic

DSP Domain

DNN Domain

Control Domain

Other Domains

Figure 6 Voice-control functional network.

The functional network of this system-function is illus-
trated in Figure 6. Here some of the abstract functions
have already been mapped to more specific algorithm do-
mains. It starts by initially detecting if there is actually
a voice present in the audio stream coming from differ-
ent microphones in the car and not just background noise
from traffic and pedestrians on the street. This step is called
Voice Activity Detection (VAD) and will be performed by a
deep neural network (DNN). If there is indeed a voice to be
heard the recording of the raw audio data is started which
then needs to be pre-processed with algorithms from the
DSP domain. During this step the Mel Frequency Cepstral
Coefficients (MFCC) are computed which serve as an input
to the next step: the key-word spotting (KWS) using again
a DNN. Only after the key-word has been detected the ac-
tual voice command will be recorded, post-processed and
the corresponding actions are carried out.
In the following we provide an incomplete APPEL model
of this system-function:

Design VoiceControl

(...)

VoiceActivityDetection isA Function (...)
It isImplementedBy DeepNeuralNetworkVAD, (...)

AudioPreProcessing isA Function (...)
It isImplementedBy MFCCComputation, (...)

KeyWordSpotting isA Function (...)
It isImplementedBy DeepNeuralNetworkKWS, (...)

(...)

DeepNeuralNetworkVAD isInstanceOf DeepNeuralNetworkSW
Property (... Properties refined from library ...)

MFCCComputation isInstanceOf DigitalSignalProcessingSW
Property (... Properties refined from library ...)

DeepNeuralNetworkKWS isInstanceOf DeepNeuralNetworkSW
Property (... Properties refined from library ...)

(...)

Furthermore, those software components have to be
mapped onto a hardware component. Obviously, the auto-
motive domain comes with utterly different requirements
than voice controlled smart assistants that have a stable in-
ternet connection and wall power. The whole process needs
to be performed on site as, apart from privacy concerns, it
might not be possible to use a server based speech-to-text
system due to an unreliable internet connection. Moreover,
it needs to be highly energy-efficient as to not drain the
car’s battery. Following those requirements the DNN used
for key-word spotting is mapped onto an instance of the
ultra low-power AI hardware accelerator UltraTrail as de-
scribed in [18]:

(...)
ultraTrail1 isInstanceOf UltraTrail

DeepNeuralNetworkKWS isInstanceOf DeepNeuralNetworkSW
It isExecutedBy ultraTrail1
It hasElement LayerConvExt_0
(...)
It hasElement LayerConvExt_4

LayerConvExt_0 isInstanceOf DeepNeuralNetworkLayer
Requirement runtime = (t_l <= 3000)
Property C: Int(1 .. 56)
Property C_w: Int(2 .. 127)
Property K: Int = 16
Property F: Int = 3
Property s: Int = 1
Property p: Int = 0

(...)

In a design model, the constraint network of AGILA uses
all properties and its dependencies to compute new upper
and lower bounds (actually, safe inclusions thereof) for all
properties. For this purpose, it uses AADD and BDD for
symbolic computation (see [14]) on a network of depen-
dencies generated by the APPEL parser.
Once the model is loaded, properties can be restricted to
ranges or also set to concrete values. This permits an inter-
active, very early analysis of system performances based
on available knowledge – there the library and estimation
formula from Section 4.
In the given example the parameters C and C_w of the
LayerConvExt_0 layer are intervals taken from [18]. C is
the number of network layer input channels and C_w rep-
resents the width of each input channel. Given the timing

C10
20

30
40

50

C_w
020406080100120

t(l) [cycles]

1000

2000

3000

4000

5000

runtime requirement: t(l) 3000

1000

2000

3000

4000

5000

(a) Runtime t(l) for varying C and C_w.

0 10 20 30 40 50
C

20

40

60

80

100

120

C_
w

runtime requirement
valid design point
invalid design point
pareto front

(b) Design points for runtime requirement t(l)≤ 3000.

Figure 7 Runtime evaluation of the LayerConvExt_0 on the UltraTrail accelerator.

requirement runtime t(l) ≤ 3000 of LayerConvExt_0 a
design space for the execution on the UltraTrail accelerator
can be obtained through an external tool. Figure 7(a) shows
this design space together with the requirement runtime.
In Figure 7(b) all possible design points are shown and
classified into valid, invalid, and pareto front. From all
valid design points a selection based on other external re-
quirements can be achieved.

5 Discussion and Conclusion

APPEL is a formal, textual modeling language that allows
designers to model the inheritance, decomposition, and
properties and its dependencies of a system. Libraries in
APPEL can be seen as an ontology with a domain-specific
top-level ontology for modeling mechatronic, HW/SW and
Analog/Mixed-signal knowledge and designs. Libraries
support the documentation and semantification of knowl-
edge throughout the product life cycle, whereas designs
can be evaluated using this knowledge, which allows very
early estimates for system properties. The expressivity and
application of the language has been demonstrated by the
example of a knowledge base for the estimation of run-
times of future HW/SW systems.
Compared with the SysML v2 textual notation in combi-
nation with OCL, the readability by non-modeling experts,
and the integration of model and constraint propagation –
are the main difference.
As a compact example, we give a simple Motorcycle
model that is a specialization of a Vehicle, has a property
mass and consists of an engine and two wheels (at least in
this simple model). In SysML:

block Motorcycle :> Vehicle {

value mass : ScalarValues::Real;
part eng : Engine;
part wheels: Wheel [2 .. 2];

}

In addition, we assume that the mass is limited to values
between 0 and 500 kg via OCL, e.g.:

context Motorcycle inv: self.mass >=0;
context Motorcycle inv: self.mass <= 500;

For comparison, Appel integrates the SysMLv2 model and
the OCL constraints:

Motorcycle isA Vehicle
It hasElement Engine
It hasElement wheels: 2 Wheel
It hasProperty mass: Real(0 ..500) [kg]

The model is arguably closer to natural language. Fur-
thermore, each line can be extended to a semantic triple as
done above, if one adds the optional it or the name to the
triple. This permits the interpreted application and inter-
active work where a user can interactively make additions
or changes to a model, or explore the impact of possible
refinements.
The language itself does not support access rights and ver-
sion management for traceability. This is currently done in
the AGILA backend, where also the constraint propagation
is done to check consistency which is not in the scope of
this paper.

Future Work There are several strains of research that
build on top of APPEL. The first one is the development of
domain-specific modeling libraries in the domains

• Future HW/SW Systems that include also functions
for predicting performances of future realizations,
based on e.g. Moore’s law.

• Sensors, converters, and Analog/Mixed-Signal sys-
tems.

• Mission profiles.

Second, we are continuously improving APPEL and the
AGILA backend with its constraint network that is used
for the analysis. Current work includes in particular the
improved support for probabilistic properties in the con-
straint network. Furthermore, we work on improving the
support for representation of requirements in designs and
its relations to component instances, in particular to also
enable tracing of these relations.

Acknowledgement The authors acknowledge the finan-
cial support by the Federal Ministry of Education and Re-
search of Germany and the European Commission in the
GENIAL! project and Arrowhead Tools project.

References

[1] C. W. Soo, D. Midgley, and T. M. Devinney, “The
process of knowledge creation in organizations,”
SSRN Electronic Journal, 2002. [Online]. Available:
https://ssrn.com/abstract=376080

[2] N. Regnat, “Why SysML does often fail – and possi-
ble solutions,” in Modellierung 2018, Lecture Notes
in Informatics. Gesellschaft für Informatik, 2018.

[3] “Object Management Group, Unified Mod-
eling Language,” 2017. [Online]. Available:
https://www.omg.org/spec/UML/2.5.1/PDF

[4] “Object Management Group, Specifica-
tion of SysML 1.4.” [Online]. Available:
http://www.omg.org/spec/SysML/1.4/PDF

[5] “Object constraint language, v2.4,” 2014. [Online].
Available: https://www.omg.org/spec/OCL/

[6] SysML v2 Submission Team, “Introduction to the
SysML v2 Language – Textual Notation.” [Online].
Available: https://drive.google.com/drive/folders
/1VMirOt7aQHyG912eQJETXU606WkAdgVw

[7] “World Wide Web Consortium, Web Ontology
Language (OWL),” 2012. [Online]. Available:
https://www.w3.org/OWL/

[8] H. Graves, “Integrating SysML and OWL,” in
Proceedings of the 6th International Conference on
OWL: Experiences and Directions - Volume 529, ser.
OWLED’09. Aachen, Germany, Germany: CEUR-
WS.org, 2009, pp. 117–124. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2890046.2890059

[9] E. Alkhammash, “Formal modelling of owl
ontologies-based requirements for the development
of safe and secure smart city systems,” Soft Com-
puting, vol. 24, no. 15, pp. 11 095–11 108, 2020.
[Online]. Available: https://doi.org/10.1007/s00500-
020-04688-z

[10] S. J. Körner and T. Brumm, “Improving natural
language specifications with ontologies,” in Pro-
ceedings of the 21st International Conference on
Software Engineering & Knowledge Engineering
(SEKE’2009), Boston, Massachusetts, USA, July 1-
3, 2009. Knowledge Systems Institute Graduate
School, 2009, pp. 552–557.

[11] H.-J. Happel and S. Seedorf, “Applica-
tions of Ontologies in Software Engineering,”
in International Workshop on Semantic Web En-
abled Software Engineering (SWESE’06), Athens,
USA, November 2006. [Online]. Available:
http://fparreiras/papers/AppOntoSE.pdf

[12] P. João, J. Almeida, F. Musso, V. Carvalho, C. Fon-
seca, and G. Guizzardi, “Preserving multi-level se-
mantics in conventional two-level modeling tech-
niques,” 08 2019.

[13] R. Höttger, H. Mackamul, A. Sailer, J.-P. Steghöfer,
and J. Tessmer, “App4mc: Application platform
project for multi- and many-core systems,” it - Infor-
mation Technology, vol. 59, 11 2017.

[14] C. Zivkovic, C. Grimm, M. Olbrich, O. Scharf,
and E. Barke, “Hierarchical verification of AMS
systems with affine arithmetic decision diagrams,”
IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 38, no. 10, pp.
1785–1798, Oct. 2019.

[15] C. Grimm and M. Rathmair, “Dealing with Un-
certainties in Analog/Mixed-Signal Systems,” in
Proceedings of the 54th Annual Design Automation
Conference, {DAC} 2017, Austin, TX, USA, June 18-
22, 2017, 2017, pp. 35:1–35:6. [Online]. Available:
http://doi.acm.org/10.1145/3061639.3072949

[16] R. Arp, B. Smith, and A. D. Spear, Building Ontolo-
gies with Basic Formal Ontology. The MIT Press,
2015.

[17] B. H. Liskov and J. M. Wing, “A behavioral notion
of subtyping,” ACM Trans. Program. Lang. Syst.,
vol. 16, no. 6, p. 1811–1841, Nov. 1994. [Online].
Available: https://doi.org/10.1145/197320.197383

[18] P. P. Bernardo, C. Gerum, A. Frischknecht,
K. Lübeck, and O. Bringmann, “UltraTrail: A con-
figurable Ultralow-Power TC-ResNet AI Accelerator
for Efficient Keyword Spotting,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 11, pp. 4240–4251, 2020.

